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Sipp AR, Gwin JT, Makeig S, Ferris DP. Loss of balance during
balance beam walking elicits a multifocal theta band electrocortical
response. J Neurophysiol 110: 2050–2060, 2013. First published
August 7, 2013; doi:10.1152/jn.00744.2012.—Determining the neural
correlates of loss of balance during walking could lead to improved
clinical assessment and treatment for individuals predisposed to falls.
We used high-density electroencephalography (EEG) combined with
independent component analysis (ICA) to study loss of balance during
human walking. We examined 26 healthy young subjects performing
heel-to-toe walking on a treadmill-mounted balance beam as well as
walking on the treadmill belt (both at 0.22 m/s). ICA identified
clusters of electrocortical EEG sources located in or near anterior
cingulate, anterior parietal, superior dorsolateral-prefrontal, and me-
dial sensorimotor cortex that exhibited significantly larger mean
spectral power in the theta band (4–7 Hz) during walking on the
balance beam compared with treadmill walking. Left and right sen-
sorimotor cortex clusters produced significantly less power in the beta
band (12–30 Hz) during walking on the balance beam compared with
treadmill walking. For each source cluster, we also computed a
normalized mean time/frequency spectrogram time locked to the gait
cycle during loss of balance (i.e., when subjects stepped off the
balance beam). All clusters except the medial sensorimotor cluster
exhibited a transient increase in theta band power during loss of
balance. Cluster spectrograms demonstrated that the first electrocor-
tical indication of impending loss of balance occurred in the left
sensorimotor cortex at the transition from single support to double
support prior to stepping off the beam. These findings provide new
insight into the neural correlates of walking balance control and could
aid future studies on elderly individuals and others with balance
impairments.

EEG; source analysis; neural control; gait; independent component
analysis

IDENTIFYING NEURAL MECHANISMS involved in loss of balance
during human walking could help in designing and targeting
fall prevention interventions. Falls are a major problem in the
elderly and many neurological patient populations (National
Center for Injury Prevention and Control 2006). Injuries re-
sulting from a fall can have a significant impact on an individ-
ual’s ability to independently perform activities of daily living.
Often the exact cause, timing, or symptoms of a fall are not
clear. Consequently, developing methods for fall prevention is
challenging. Recent reviews have concluded that no single
approach to fall prevention seems to work on the majority of
the population at risk of falls (Chase et al. 2012; National
Center for Injury Prevention and Control 2008; Shubert 2011).
If specific neural mechanisms were identified as related to a

specific fall cause or to individual subjects, it might be possible
to better target a fall prevention/intervention method for a
given patient.

Control of balance requires communication and integration
across the nervous system. Preventing and recovering from loss of
balance requires an integration of visual, vestibular, propriocep-
tive, and other sensory feedback mechanisms (Faraldo-Garcia et
al. 2012; Sozzi et al. 2012). Standing posture has a clear feedfor-
ward component as well as a dependence on sensory feedback
(Lakie and Loram 2006; Loram et al. 2009). These and other
studies (Ahmed and Ashton-Miller 2007; Merfeld et al. 1999)
suggest that humans use an internal model of their body
mechanics to sense and predict loss of balance. In addition,
there are nonfunctional (short latency) and “feet-in-place”
(medium latency) postural adjustments that are controlled
through spinal reflex and brain stem circuits (Adkin et al. 2006;
Brown et al. 1999; Deliagina et al. 2012; Diener et al. 1985;
Jacobs and Horak 2007; Loram and Lakie 2002; Rankin et al.
2000). Cortical areas activate long-latency movements that
produce a change in base of support, such as stepping. Specif-
ically, a cerebellar-cortical loop has been implemented in
integrating prior experience into postural responses, and a
basal ganglia-cortical loop is responsible for incorporating
sensory information on the current posture (Jacobs and Horak
2007). There have been some imaging studies that have at-
tempted to provide insight into the cortical mechanisms in-
volved in whole body postural responses (Jacobs et al. 2008;
Mochizuki et al. 2008, 2009a, 2009b; Slobounov et al. 2000,
2005, 2006, 2008, 2009), but they have not explored human
locomotion and the technical challenges that come with walk-
ing.

Recent technological advancements enable researchers to
study electrocortical dynamics directly at the level of cortical
sources, even during whole body movements including head
motion (Gramann et al. 2011; Makeig et al. 2009). High-
density electroencephalography (EEG) can be combined with
independent component analysis (ICA) to identify electrocor-
tical areas that are synchronized with the gait cycle during
human walking (Gwin et al. 2011; Wagner et al. 2012). Studies
that have used EEG in other motor tasks, such as joystick
manipulation and standing postural perturbations, have identi-
fied that the anterior cingulate cortex is highly involved in error
detection during motor tasks (Anguera et al. 2009; Gwin et al.
2011; Mochizuki et al. 2009a). In one recent study, Slobounov
et al. (2009) found significantly higher spectral power in low
theta (4–5 Hz) and alpha (8–12 Hz) frequency bands from
scalp electrodes located over the anterior cingulate during
unstable balance when standing on one leg.
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The purpose of this study was to identify specific cortical
regions with spectral power modulations related to loss of
balance during walking. We had healthy young subjects walk
on a 2.5-cm-wide by 2.5-cm-tall treadmill-mounted balance
beam (treadmill and motor learning studies described in Do-
mingo and Ferris 2009, 2010) to induce experimental loss of
balance during gait. We recorded high-density EEG, electro-
myography, and body motion analysis to identify electrocorti-
cal and kinematic correlates of loss of balance. We hypothe-
sized that the anterior cingulate and sensorimotor cortical areas
would exhibit significant changes in spectral power in the theta
frequency band related to loss of balance. We based this
hypothesis on previous studies demonstrating increased spec-
tral power from EEG electrodes located near anterior cingulate
and sensorimotor regions during motor errors (Anguera et al.
2009; Mochizuki et al. 2009b; Slobounov et al. 2009). Al-
though past research has identified increased theta power in
scalp EEG electrodes over these cortical regions of interest,
that research has been on sitting/standing posture or hand/arm
movement, not locomotion. During human locomotion, there is
strong involvement of spinal locomotor networks and inhibi-
tion of cortical multisensory areas (Jahn and Zwergal 2010).
As a result, it is not clear whether results from standing whole
body motor tasks can directly transfer to walking.

Another novel aspect of our study was the combination of
high-density EEG and electrocortical source imaging via ICA
and inverse head modeling. These techniques allowed us to
look at specific cortical regions rather than relying on electrode
locations for source localization. Our approach separated elec-
trode channel signals into maximally independent source sig-
nals, factored out eye, muscle, and movement artifacts from
brain electrical activity (Jung et al. 2000a, 2000b; Makeig et al.
1997; Onton and Makeig 2006), and then further identified
distinct three-dimensional cortical source regions related to
walking balance.

METHODS

Subjects. Twenty-six healthy volunteers with no history of major
lower limb injury and no known neurological or locomotor deficits
completed this study. All subjects characterized themselves as right hand
and right foot dominant [12 women and 14 men, 23 � 5 yr old (mean �
SD)]. All subjects provided written informed consent. The University of
Michigan Institutional Review Board approved the protocol, and the
study complied with the standards defined in the Declaration of Helsinki.

Data collections. We mounted a 2.5-cm-wide by 2.5-cm-tall bal-
ance beam to the belt of a modified treadmill (Full Vision, Newton,
KS). The balance beam consisted of small wooden blocks that lined
up to make a continuous balance beam. We refer to this apparatus,
which has been used in prior studies (Domingo and Ferris 2009,
2010), as a balance-beam treadmill (Fig. 1).

Subjects performed off-beam and on-beam walking for 25 min
each. Subjects took breaks as desired, and no subject reported prob-
lems with fatigue. The total length of data collections varied from 60
to 120 min because of subject breaks and technical requirements of
the protocol. During off-beam walking subjects placed their feet on
the treadmill belt on either side of the narrow balance beam. During
on-beam walking subjects walked heel-to-toe (i.e., tandem). Subjects
were instructed to maintain balance only by moving their torso and
pelvis side to side (i.e., in the frontal plane). During both walking
conditions subjects crossed their arms in front of their torso (Fig. 1)
and were instructed to look straight ahead at a flat white surface
mounted in front of the treadmill. This controlled movement reduced
variability otherwise arising from extraneous arm movement and thus

enabled more reliable evaluation of motion and balance characteristics
across subjects and trials. When subjects lost their balance (i.e., when
they had to step off of the balance beam) they then were asked to
perform 5 s of off-beam walking before attempting to remount the
balance beam. All subjects wore standardized orthopedic shoes. The
treadmill belt speed was set at 0.22 m/s based on prior work in our lab
(Domingo and Ferris 2009, 2010).

During both walking conditions we recorded motion, electromyog-
raphy, and EEG data. We recorded the positions of 28 reflective
markers with a motion capture system [Motion Analysis, Santa Rosa,
CA (at 128 Hz) or Vicon, Los Angeles, CA (at 100 Hz)]. We placed
these markers on subjects’ feet, legs, pelvis, neck, and shoulders. To
record lower limb electromyography [Konigsberg Instruments, Pasa-
dena, CA (at 1,200 Hz) or Biometrics, Ladysmith, VA (at 1,000 Hz)],
we placed electrodes on the tibialis anterior, soleus, medial gastroc-
nemius, and lateral gastrocnemius. We prepared the skin at each
electrode site by shaving and cleaning with rubbing alcohol. We used
tape to secure each electrode over the muscle belly along the long
axis. We also secured the electrode wires to the limbs with athletic
foam wrap. We recorded EEG with a 256-channel active electrode
array (sampling rate 512 Hz; Active II, BioSemi, Amsterdam, The
Netherlands). Before data collection, we measured electrode imped-
ance and used electrode gel to ensure that the impedance was �20 k�
for each channel. The recording bandpass filter was DC to 104 Hz.
During data collection, we positioned the EEG amplifier above the
subject and constrained wire movement to minimize motion artifact.
Electrode impedance was monitored during subject collections, and
electrodes were regelled as needed to maintain an impedance of �20
k� for each channel.

Data preprocessing. We identified gait events of heel strike and
loss of balance from the motion data with Visual 3D software
(C-Motion, Germantown, MD). A 6-Hz low-pass filter removed
marker movement artifacts in motion capture data. We considered
pelvic marker movement on/near the sacrum (S1/S2 vertebrae) to be
representative of center of mass movement. Past studies have found
no significant differences between this approach and a more compli-
cated body segment model at low walking speeds (Gard et al. 2004;
Saini et al. 1998). We determined heel strike events for each foot (i.e.,

Fig. 1. A sketch of the experimental setup showing a subject walking on a
treadmill-mounted balance beam. A picture of the balance-beam treadmill is
also shown (inset).
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the times when the foot contacted the treadmill belt or balance beam)
based on the velocity of a reflective marker on the ankle. Vertical
ankle marker position was used to distinguish between foot contact
with the treadmill belt (TC) and contact with the balance beam (BC).

We defined loss of balance as the subject stepping off the beam and
onto the treadmill. In other words, loss of balance occurred between
when a foot was in contact with the beam and the other foot contacted
the treadmill belt. We did not identify an exact time that balance was
lost, as it could be defined at many times between the foot leaving the
beam and making contact with the treadmill.

We performed all data analysis in MATLAB (The MathWorks,
Natick, MA), using scripts based on EEGLAB, an open-source envi-
ronment for processing electrophysiological data (Delorme and
Makeig 2004). We applied a second-order high-pass Butterworth filter
with a 20-Hz cutoff frequency to the electromyography data to
remove artifacts arising from electrode wire movement plus any DC
offset. We then full-wave rectified the electromyography data. We
synchronized the EEG, electromyography, motion capture data, and
gait events off-line, using a common analog timing signal. A 1-Hz
high-pass filter removed drift in the EEG data. We determined TC and
BC events for each foot (i.e., the times when the foot contacted the
treadmill belt or the balance beam) based on the gait pattern of
heel-strike and loss-of-balance events. Particularly noisy EEG chan-
nels were removed from the data. Initial channel rejection criteria
were a standard deviation larger than 1,000 �V, kurtosis � 3 standard
deviations from the mean of all channels, or correlation coefficient
with nearby channels � 0.4. These criteria were adjusted for each
subject’s data to improve ICA dipole localization and reduce residual
variances between the independent component scalp maps and the
computed scalp projections of the best-fitting single equivalent dipole
component models. The remaining channels were average referenced.
We retained 134 � 19 (mean � SD) channels for each subject based
on these criteria.

Analysis of electrocortical sources. For each subject, we used
adaptive mixture ICA (AMICA) (Delorme et al. 2012; Palmer et al.
2006, 2008) to parse the EEG signals into a sum of maximally
independent component processes. Before performing ICA decompo-
sition, we concatenated EEG data from all experimental conditions for
each subject to form a single data stream and removed periods of EEG
data with substantial artifact. We defined substantial artifact as z-
transformed power across all channels in a given time window being
�0.8, but adjusted this value slightly for each subject’s data to further
improve our ability to localize the brain source components with a
single dipole model (Delorme et al. 2012). The sizes of the data
matrices so decomposed were 134 � 19 channels (mean � SD; min:
103, max: 168) by 944,890 � 999,950 time points (mean � SD; min:
799,880, max: 1,184,695) or 30.3 � 3.3 min (mean � SD; min: 26.0,
max: 38.6) of data. This gave the decompositions a favorable mean
ratio (time points to unmixing coefficients, here 1342) of �50, i.e.,
above our heuristic standard minimum of 30 based on results of
previous analyses.

We fit a single equivalent current dipole model for each indepen-
dent component, using a boundary element method (BEM) head
model based on the Montreal Neurological Institute (MNI) brain
(Montreal, QC, Canada) as implemented in the EEGLAB DIPFIT
toolbox (Oostenveld and Oostendorp 2002). We used component
scalp maps learned by AMICA from the data as inputs for this
modeling. We excluded independent components from further analy-
sis when the equivalent current dipole was located outside of the
cortical gray matter or when the projection of the (best fitting)
equivalent current dipole to the scalp (the dipole scalp map) accounted
for �85% of the independent component scalp map variance. We also
rejected independent components from further analysis if their topog-
raphy, time course, and power spectrum were reflective of nonbrain
eye movement or electromyographic processes (Jung et al. 2000a,
2000b). We assumed that the remaining independent components
(16 � 8 per subject; min: 7, max: 46) reflected activity generated in

a cortical source area close to the location of their equivalent dipole
model (Akalin Acar and Makeig 2013).

Each time a subject stepped off the balance beam and onto the
treadmill belt (i.e., lost his/her balance), we computed a single-trial
time/frequency log spectrogram for each independent component
source activity using three-cycle Morlet wavelets. To enable averag-
ing and statistical reliability testing, these spectrograms were linearly
time-warped so that TC and BC events occurred at the same adjusted
latencies in each spectrogram. The spectrograms were computed over
a two-stride window (1 stride before step-off and 1 stride after
step-off). To visualize changes in the spectrograms associated with
loss of balance, we subtracted the average log spectrum for the first
step in the two-stride cycle from each latency of the mean event-
related spectrogram (Makeig 1993). Time-warping of the spectro-
grams standardized the time intervals between five successive gait
events, with the exact times defined based on the median values,
rounded to the nearest 100 ms. Actual median event times for the
time-warped gait events of BC and TC were 0, 1,100, 2,200, 3,300,
and 4,400 ms (TC¡TC¡TC¡TC¡TC for steady-state balance
beam trials; BC¡BC¡TC¡TC¡TC for loss-of-balance trials).

We analyzed trials of walking on and off the balance beam with the
same methodology. We computed a single-trial time/frequency log
spectrogram for each independent component source activity using
three-cycle Morlet wavelets. These spectrograms were linearly time-
warped so that TC events occurred at the same adjusted latencies in
each spectrogram. Because walking on and off the balance beam are
steady-state tasks, the spectrograms were computed over a one-stride
window. To visualize changes in the spectrograms associated with the
gait cycle and steady-state balance, we subtracted the average log
spectrum for the entire stride cycle from each latency of the mean
event-related spectrogram (Makeig 1993). Time-warping of the spec-
trograms standardized the time intervals between three successive gait
events, with the exact times defined based on the median values, rounded
to the nearest 100 ms. Actual median event times for the time-warped gait
events of right treadmill contact (RTC) and left treadmill contact (LTC)
were 1,100, 2,200, and 3,300 ms (RTC¡LTC¡RTC). Time periods of
0 to 1,100 ms and 3,300 to 4,400 ms were not included to enable
evaluation of steady-state walking (e.g., edge effects could exist in
those time periods because of a subject about to lose balance or
recovering from a loss of balance).

Group analysis and statistics. For group analysis, we clustered
independent component sources from all subjects using EEGLAB
routines implementing k-means clustering on vectors jointly coding
differences in component equivalent dipole locations, scalp topogra-
phies (i.e., projection patterns of the independent component sourced
to the scalp) and component mean log power spectra during on-beam
and off-beam walking. Before clustering, the resulting joint vector
was reduced to 10 principal dimensions by principal component
analysis. Clusters containing components from �12 of the 26 subjects
were excluded from further analysis.

We then computed grand mean log power spectra for on-beam and
off-beam walking for each independent component cluster. For each
cluster, we used Wilcoxon tests to evaluate mean power differences
between conditions within a moving 2-Hz frequency window (� �
0.05). Next, for each independent component cluster we created grand
average baseline-normalized log spectrograms (Makeig 1993) for
loss-of-balance events by averaging across data windows time locked
to all loss-of-balance events for all subjects. Subjects who had fewer
than three loss-of-balance events to either side (i.e., right foot step-off
or left foot step-off) were not included in the loss-of-balance spectro-
grams (n � 9). Altogether, the loss-of-balance analysis included a
total of 302 trials from 17 subjects comprising 18 � 5 trials per
subject (mean � SD; min: 10 trials, max: 28 trials). Significant
changes in spectral power during these trials, compared with baseline,
were identified with the nonparametric bootstrapping statistical com-
parison approach in EEGLAB (� � 0.05).

2052 ELECTROCORTICAL DYNAMICS DURING BALANCE BEAM WALKING

J Neurophysiol • doi:10.1152/jn.00744.2012 • www.jn.org



We created grand average baseline-normalized log spectrograms
for each independent component cluster (Makeig 1993) for steady-
state walking on and off the balance beam by averaging across data
windows time locked to TC events for all subjects. Altogether, this
steady-state walking analysis included a total of 10,600 trials from 26
subjects comprising 204 � 110 trials per subject (mean � SD; min:
28 trials, max: 623 trials). Significant changes in spectral power
during these trials, compared with baseline, were identified with the
nonparametric bootstrapping statistical comparison approach in
EEGLAB (� � 0.05).

RESULTS

ICA produced clusters of electrocortical sources in or near
anterior cingulate (52 sources, 21 subjects), posterior cingulate
(2 clusters: 40 sources, 16 subjects; 28 sources, 13 subjects),
superior dorsolateral-prefrontal (22 sources, 11 subjects), an-
terior parietal (22 sources, 12 subjects), left lateral sensorimo-
tor (18 sources, 14 subjects), right lateral sensorimotor (33
sources, 14 subjects), and medial sensorimotor (37 sources, 15
subjects) cortex (Fig. 2).

It also identified clusters in or near insular cortex and visual
cortex, but these clusters contained sources from �10 subjects.
These clusters also had no areas of significant difference in
their loss-of-balance spectrograms or significant changes in
spectral power between on-beam versus off-beam walking. As
a result, we excluded the insular and visual cortex clusters from
further analysis.

During walking on the balance beam compared with walking
on the treadmill belt, independent component sources in the
left and right sensorimotor cortex clusters exhibited lower
spectral power in the alpha (8–12 Hz) and beta (12–30 Hz)
frequency bands, as well as in higher-frequency bands (Fig. 3A).
This difference was significant for both hemispheres in the beta
band but was only significant for the alpha band in the left
hemisphere cluster. Clustered independent component sources
in or near anterior cingulate, anterior parietal, superior dorso-

lateral-prefrontal, right sensorimotor, and medial sensorimotor
cortex exhibited significantly larger mean spectral power in the
theta band (4–7 Hz) during walking on the balance beam
compared with off-beam walking (Fig. 3A).

Loss-of-balance analyses included 17 subjects with 18 � 5
trials per subject (mean � SD; min: 10 trials, max: 28 trials per
subject), for a total of 302 trials. Data comprised 152 trials of
EEG, 148 trials of electromyography, and 157 trials of center
of mass motion data for left-side loss of balance and 150 trials
of EEG, 149 trials of electromyography, and 156 trials of
center of motion data for right-side loss of balance. Missing
data for some trials arose from movement artifacts and/or equip-
ment malfunctions. Event times used for the time-warped gait
events of BC and TC were 0, 1,100, 2,200, 3,300, and 4,400 ms
(TC¡TC¡TC¡TC¡TC for steady-state balance beam trials;
BC¡BC¡TC¡TC¡TC for loss-of-balance trials).

All independent component source clusters except the me-
dial sensorimotor cortex cluster exhibited a significant increase
in theta band spectral power during loss of balance (i.e., before
the first foot contact on the treadmill, TC, in these trials) (Fig.
3B). The strongest power increase was in the left sensorimotor
cortex cluster, which exhibited a 2-dB increase immediately at
the beginning of double support with both feet on the balance
beam (i.e., at the BC preceding TC in Fig. 3B). Anterior
cingulate, anterior parietal, superior dorsolateral-prefrontal,
and medial sensorimotor cortex exhibited alpha (8–12 Hz) and
theta (4–7 Hz) band decreases in spectral power after first TC
following loss of balance (Fig. 3B).

For both loss of balance to the left and to the right, signif-
icant theta band increases in spectral power of left sensorimo-
tor cluster sources occurred at the beginning of double support
on the balance beam before losing balance (Figs. 4 and 5).
During losses of balance to the left side, in the right sensori-
motor cluster there was generally a less pronounced and later
change in theta band power. For losses of balance to the right

Fig. 2. Clusters of independent component
(IC) EEG sources localized in and near an-
terior cingulate (orange), posterior cingulate
(2 clusters, magenta and cyan), superior dor-
solateral-prefrontal (yellow), anterior pari-
etal (green), left and right lateral sensorimotor
(red), and medial sensorimotor (blue) cortex.
Top: small spheres indicate the equivalent cur-
rent dipole locations of each clustered IC
source. Bottom: larger spheres show the loca-
tions of the cluster centroids.
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side, there were no significant changes in theta band spectral
power for the right sensorimotor cluster.

Because the electromyography data for steady-state beam
walking were highly variable from step to step, the loss-of-
balance muscle activity patterns in most cases did not diverge
from steady-state beam walking patterns beyond 1 standard devi-
ation until after TC for the swing limb (Figs. 4 and 5). The
electromyography data for the stance or stabilizing limb (i.e., the
limb that remained on the beam the longest) show loss-of-balance
muscle activity patterns that diverge from steady-state beam

walking patterns beyond 1 standard deviation near the end of
double support, i.e., the beginning of the swing phase in which the
subject stepped off the beam. The large variations made electro-
myography data a poor predictor of when the loss of balance
occurred. The lateral center of mass position data for the two
conditions (loss of balance and steady-state beam walking) show
differences larger than 1 standard deviation at about the time of
first TC after loss of balance (Figs. 4 and 5). The vertical center of
mass position data did not show any differences between the two
conditions larger than 1 standard deviation.

Fig. 3. A: grand average spectral power for each cluster of electrocortical sources during walking on the balance beam (red line) and walking on the treadmill
belt (off the balance beam; blue line). The lowest frequency shown is 3 Hz. Significant differences in spectral power between the on-beam and off-beam
conditions are indicated by the shaded regions: reddish (theta band) regions indicate larger power in balance beam walking; bluish regions (higher frequencies)
indicate larger power in treadmill walking (P � 0.05). The colors of the plot titles correspond to the colors of the equivalent current dipoles in Fig. 2. DL-PFC,
superior dorsolateral-prefrontal cortex. B: grand average normalized log spectrograms showing changes in spectral power during and after loss of balance relative
to average spectral power during the last successful step prior to loss of balance (left of red vertical line). Mean step period (time between successive
foot-to-ground contacts) was 1,100 ms. Four steps are shown; BC indicates foot-to-beam contact, and TC indicates foot-to-treadmill contact. After the second
BC event, the subject loses balance and recovers by stepping off of the beam and onto the treadmill. Nonsignificant differences from baseline (P � 0.05) have
been set to 0 dB (green). The colors of the plot titles correspond to the colors of the equivalent current dipoles and dipole clusters in Fig. 2. The left sensorimotor
cluster plot averages only those trials in which a loss of balance occurred toward the right side of the beam; the right sensorimotor cluster plot averages only
those trials in which a loss of balance occurred toward the left side of the beam. All other results shown here average all trials when a loss of balance occurred,
both to the left and to the right. Theta spectral power increases began in the left sensorimotor sources, followed by the posterior cingulate, anterior cingulate,
and right sensorimotor sources, and finally in anterior parietal and superior dorsolateral-prefrontal sources.
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Steady-state walking on and off the beam EEG analyses in-
cluded 26 subjects, with 204 � 110 trials per subject (mean �
SD; min: 28 trials, max: 623 trials per subject), for a total of
10,600 trials. Event times used for the time-warped gait events of
RTC and LTC were 1,100, 2,200, and 3,300 ms (RTC¡LTC¡
RTC). No independent component source clusters exhibited a
significant increase in theta band (4–7 Hz) spectral power
during steady-state walking either on or off the balance beam
(Fig. 6). In fact, there are no sustained significant variations
that appear to correlate with the gait cycle.

DISCUSSION

The purpose of this study was to assess electrocortical
dynamics associated with maintaining and losing walking
balance in humans. In particular, we hypothesized that anterior
cingulate and sensorimotor cortical areas would exhibit signif-
icant theta band (4–7 Hz) EEG power increases during loss of

walking balance. When subjects lost their balance and stepped
off the narrow treadmill-mounted balance beam, significant
increases in theta band spectral power occurred in indepen-
dent component source clusters located in and near anterior
cingulate, posterior cingulate, anterior parietal, left and right
sensorimotor, and superior dorsolateral-prefrontal cortex.
These spectral power increases arose at the beginning of
double-limb support with both feet on the balance beam.
These changes in spectral power did not occur during steady-
state walking on or off the balance beam (Fig. 6). This suggests
that these broadly distributed electrocortical changes were
specifically related to calculating an imminent loss of balance,
and that sensory information from the leading limb contact
with the balance beam was critical to the assessment of
balance.

The first significant changes in electrocortical dynamics
came from the left sensorimotor source cluster at the start of
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Fig. 4. Timing comparison of mean sensorimotor
source cluster changes in EEG spectral power, lower
leg electromyography (EMG), and center of mass mo-
tion for losses of balance to the left side of the beam.
Four steps are shown. After the second BC (black
vertical line), the subject loses balance and recovers by
stepping off of the beam and onto the treadmill. For the
sensorimotor cluster EEG spectral changes, nonsignif-
icant differences from baseline (P � 0.05) have been
set to 0 dB (green); the lowest frequency shown is 3 Hz.
For the lower limb EMG and center of mass position
data, red lines show loss-of-balance trial averages, blue
lines are on-beam walking averages, and dashed lines
indicate �1 standard deviation. The cluster dipole im-
ages are replicated from Fig. 3.
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double support on the balance beam (Fig. 3B). The theta band
increase in right sensorimotor cortex was less pronounced than
in left sensorimotor cortex (Fig. 3B). This was true for both
steps off to the right of the balance beam and steps off to the
left of the balance beam (Figs. 4 and 5). In fact, for steps off to
the right, there were no significant changes in spectral power
below 12 Hz during the loss of balance in the right sensori-
motor source cluster. This suggests that, in these right-handed
and -footed subjects, the left sensorimotor cortex plays a larger
role in sensing loss of balance during walking than the right
sensorimotor cortex. This conclusion is supported by previous
literature indicating that the left hemisphere plays a more
dominant role than the right hemisphere in skilled complex
movements (Serrien et al. 2006). We note, however, that the
medial sensorimotor region did not show significant theta
activation associated with loss of balance.

Theta spectral power increases in other electrocortical re-
gions also began during the double-support phase, shortly after
the theta spectral power increase in the left sensorimotor cortex
(Fig. 3B). Posterior cingulate and superior dorsolateral-pre-
frontal areas showed significant increases in theta spectral
power, following similar increases in the left sensorimotor
cluster but before those in the anterior cingulate. Posterior
cingulate cortex has been associated with self-referential pro-
cessing, episodic memory, and vestibular functions (Kim 2012;
Lopez et al. 2012). The involvement of this brain region in loss
of balance is likely due to sensory/vestibular processing and
might provide information to the anterior cingulate, which
exhibited a subsequent theta spectral power increase.

The superior dorsolateral-prefrontal cortex cluster exhibited
a theta spectral power increase similar to that of the anterior
cingulate cluster. The source localization and scalp projections
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Fig. 5. Timing comparison of mean sensorimotor
source cluster changes in EEG spectral power,
lower leg EMG, and center of mass motion for
losses of balance to the right side of the beam. Four
steps are shown. After the second BC (black verti-
cal line), the subject loses balance and recovers by
stepping off of the beam and onto the treadmill. For
the sensorimotor cluster EEG spectral changes,
nonsignificant differences from baseline (P � 0.05)
have been set to 0 dB (green); the lowest frequency
shown is 3 Hz. For the lower limb EMG and center
of mass position data, red lines show loss-of-bal-
ance trial averages, blue lines are on-beam walking
averages, and dashed lines indicate �1 standard
deviation. The cluster dipole images are replicated
from Fig. 3.
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of the superior dorsolateral-prefrontal cluster suggests that
theta spectral power from this cluster could be the neural
generator largely responsible for scalp electrode signals attrib-
uted in other studies to ventral anterior cingulate, medial-
frontal, frontocentral, or posterior frontomedial cortices during
error monitoring (Adkin et al. 2006; Debener et al. 2005;
Dehaene et al. 1994; Luu et al. 2003; Maki and McIlroy 2007;
Quant et al. 2004).

The increase in theta band power in the anterior cingulate
cluster appears to have become significant somewhat after the
theta band increases in posterior cingulate and superior dorso-
lateral-prefrontal clusters (Fig. 3B). This supports the idea that
a primary role of the anterior cingulate cortex in walking
balance is in error detection. Past studies on human balance
have speculated that the nervous system compares current
sensory information with that expected from an internal for-
ward-looking model, with sufficient mismatch triggering a
postural response (Ahmed and Ashton-Miller 2004, 2005,
2007).

During loss of balance, both anterior parietal and anterior
cingulate clusters exhibited significant concurrent increases in
theta band power. The parietal lobe is involved in sensory
information integration and generates decision-related activity
(Romo and de Lafuente 2013). Information from the parietal
lobe may contribute to anterior cingulate processing regarding
error trend detection for walking balance.

Following loss of balance, upon adoption of a stable, off-
beam gait, both theta and alpha band spectral power decreased
significantly below the stable on-beam walking baseline (Fig.
3B). This decrease was consistent across anterior cingulate,
posterior cingulate, anterior parietal, medial sensorimotor, and
superior dorsolateral-prefrontal clusters.

In general, successful balance beam walking was associated
with significantly higher mean theta band power in the anterior
cingulate, anterior parietal, superior dorsolateral-prefrontal,
and right and medial sensorimotor cortical clusters compared
with off-beam walking on the treadmill surface (Fig. 3A). This is
similar to findings for averaged scalp electrode data comparing
unstable and stable single-leg standing postures (Slobounov et al.
2009). The higher theta band power did not show many significant
changes within the gait cycle for either steady-state walking on the
balance beam or steady-state walking off the balance beam (Fig.
6). This suggests that walking involves baseline theta band activ-
ity (in regions shown in Fig. 3A) that significantly increases with
loss of balance (in regions shown in Fig. 3B). Hence, what is
commonly thought of as theta band error detection extends to
postural error detection during gait and loss of balance during gait.

These findings show that the earliest changes in left senso-
rimotor cortex activity occurred regardless of the direction of
the loss of balance (to the left or right). The significant changes
in left sensorimotor cortex activity occurred just as the subjects
transitioned from single-limb support to double-limb support.
The added proprioceptive information that comes from having
both limbs on the balance beam compared with just one limb
on the balance beam is likely crucial to computing and updat-
ing the sense of loss of balance. The second foot on the ground
provides proprioceptive information about center of mass cal-
culations similar to how light touch with a finger can improve
stability during standing or walking (Jeka 1997).

Because of the large step-to-step variability in the electro-
myography and center of mass position data, traditional met-
rics used for indicating deviations in these gait parameters
(e.g., divergence by more than 1 standard deviation; Kao et al.
2010) did not provide a clear indication of when loss of balance

Fig. 6. Grand average normalized log spec-
trograms during walking off and on the bal-
ance beam (Treadmill and Balance Beam,
respectively). Two steps are shown, with
RTC indicating right foot-to-treadmill con-
tact and LTC indicating left foot-to-treadmill
contact. Mean step period was 1,100 ms.
Nonsignificant differences from baseline
(P � 0.05) have been set to 0 dB (green).
The colors of the plot titles correspond to the
colors of the equivalent current dipoles and
dipole clusters in Fig. 2. There were no sub-
stantial changes in theta spectral power during
treadmill walking or balance beam walking
compared with those seen during loss of bal-
ance on the balance beam (Figs. 3–5).
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occurred. This result suggests that it is difficult to determine
the moment at which a person detects the loss of balance
during gait from the muscle activation patterns and kinematics.
Past studies have demonstrated that post hoc analysis of muscle
activity and kinematics can discriminate between losses of
balance and gait without loss of balance (Mak et al. 2011;
Yang et al. 2011), but these analyses are not determining the
time point at which balance is lost in real time. Our data
indicate that changes in the support limb electromyography
amplitudes of �1 standard deviation may be useful in defining
when corrective action for loss of balance begins but not when
loss of balance is detected. In the future, it may be possible to
use more portable, less obtrusive EEG electrodes (Chi et al.
2012; Liao et al. 2011) to detect the exact moment at which
humans detect their loss of balance during everyday activities.

A major limitation of our study was the difficulty in knowing
the exact instant of biomechanical loss of balance. In many
stance perturbation studies, researchers control for this limita-
tion by controlling the timing of the external perturbation. For
example, fixed-support (feet in place) postural control strate-
gies during standing elicit activation of ankle muscles �80–
140 ms after perturbation (Maki and McIlroy 2007). In our
study we did not apply discrete postural perturbations but
instead relied on naturally occurring loss of balance during a
difficult walking balance task. However, this made it more
difficult to discern the time marking the beginning of a loss of
balance. The single-trial loss-of-balance data showed wide
variations in the timing of changes in cortical source power.
The lack of an exact biomechanical loss-of-balance marker
prevented us from calculating any loss-of-balance event-re-
lated potentials (ERPs), which might be expected to include,
e.g., an error-related negativity (ERN) (Luu et al. 2004). The
analysis approach that we used included time-warping the
single-trial spectrograms to intervals between ground contact
events to allow event-locked averaging to multiple step events
and statistical analysis of spectral power changes in cortical
clusters (Fig. 3B). Time-warping after translation of the single
trials to spectrograms avoided frequency shifts that would have
occurred if time-warping had been applied to the raw indepen-
dent component data epochs.

Another limitation of our study concerned the treadmill
walking control condition. We did not compare the beam
walking to completely normal gait but to a walking condition
at a slower than normal speed with a slightly wider than normal
step width (due to straddling the balance beam). The treadmill
speed we used in all conditions, 0.22 m/s, was chosen to allow
subjects to successfully walk on the balance beam (Domingo
and Ferris 2009, 2010). A typical walking speed for a healthy
young subject is �1.25 m/s. We did not want to introduce the
confounding variable of walking speed into our comparison
between treadmill and balance beam walking conditions. Rel-
ative to normal walking speeds, slow walking is less automatic
from a neural perspective and less dependent on passive
dynamics from a biomechanical perspective. As a result, slow
walking may involve more cortical control than fast walking,
making it infeasible to directly compare the results of this study
to previous results using faster walking speeds (Gwin et al.
2010, 2011; Wagner et al. 2012).

One of the most important findings from our study was that
several widely distributed cortical regions appear to be in-
volved in sensing and detecting a loss of balance during

walking. There was a significant mean increase in theta band
spectral power for independent component EEG sources local-
ized to multiple cortical areas, including sensorimotor, anterior
cingulate, and anterior parietal regions, when our subjects
experienced loss of balance on a narrow beam. This was not
the case during steady-state walking on the treadmill and
steady-state walking on the balance beam. This increase in
theta band power in anterior cingulate cortex may likely be
related to the posited function of the anterior cingulate cortex
in error detection (Anguera et al. 2009; Gehring et al. 2012).

The observed spectral power increases in theta band source
activity in several cortical areas were likely related to senso-
rimotor control, sensory information processing, and motor
decision-making. The left sensorimotor cortex showed a stron-
ger theta band response than the right sensorimotor cortex and
appeared to precede the theta spectral power increase in ante-
rior cingulate. The early appearance of increased theta spectral
power beginning in the left sensorimotor cortex suggests that
the central nervous system recognized the loss of balance as
soon as both feet were on the balance beam for the last time.

The ensuing widespread theta band increases might reflect
activity occurring across a cortical network to plan a corrective
step and evaluate its possible biomechanical consequences
with maximum precision. In summary, these results provide
insight into the cortical brain dynamic substrates of human
walking balance and suggest that there is a multifocal cortical
network involved in detecting and correcting loss of walking
balance.
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