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Neuromechanical principles define the properties and problems that shape neural solutions for movement.
Although the theoretical and experimental evidence is debated, we present arguments for consistent struc-
tures in motor patterns, i.e., motor modules, that are neuromechanical solutions for movement particular
to an individual and shaped by evolutionary, developmental, and learning processes. As a consequence,
motor modules may be useful in assessing sensorimotor deficits specific to an individual and define targets
for the rational development of novel rehabilitation therapies that enhance neural plasticity and sculpt motor
recovery. We propose that motor module organization is disrupted andmay be improved by therapy in spinal
cord injury, stroke, and Parkinson’s disease. Recent studies provide insights into the yet-unknown under-
lying neural mechanisms of motor modules, motor impairment, and motor learning and may lead to better
understanding of the causal nature of modularity and its underlying neural substrates.
Introduction
The principles of neuromechanics are a framework for under-

standing patterns of neural activity that generate movements in

a healthy nervous system, as well as in motor deficits, and how

these patterns change through rehabilitation. Neuromechanics

is the study of interactions between neural, biomechanical, and

environmental dynamics that give rise to meaningful motor

behaviors and addresses the fundamental question, ‘‘How

does the activity of a neuron, a motor unit, or a muscle affect

behavior?’’ Neuromechanical studies reveal that the functional

consequences of activity in any of these components cannot

be interpreted independently but must be interpreted in the

context of all the forces acting on the body, including those

from the external environment, from body structures, and from

other muscles (Dickinson et al., 2000; Hooper and Weaver,

2000; Nishikawa et al., 2007). Depending on the neuromechani-

cal context, a movement could be unaffected by, or critically

dependent upon, the timing and amplitude of amuscle’s activity.

As a consequence, our ability to functionally interpret neural

motor signals is intimately entwined with the properties of the

neuromechanical system (Chiel and Beer, 1997; Chiel et al.,

2009; Tytell et al., 2011). Here, we explore how the following neu-

romechanical principles provide insight into how the nervous

system constructs and learns movements:

(1) Motor abundance: for any given task, there are many

functionally equivalent motor solutions.
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(2) Motor structure: the structure of motor patterns is shaped

by biomechanical task relevance.

(3) Motor variability: motor variability is high where the effect

on motor output is low.

(4) Individuality: individuals express different motor styles

that depend on evolutionary, developmental, and learning

processes.

(5) Multifunctionality: muscles can contribute to many ac-

tions; a few muscles can be combined in many ways to

produce a wide range of different actions.

In the first section, we hypothesize that these neuromechani-

cal principles and plasticity in the nervous system support the

development of motor modules, which are defined as coordi-

nated patterns of muscle activity that flexibly combine to pro-

duce functional motor behaviors (Bizzi and Cheung, 2013; Bizzi

et al., 2008; d’Avella et al., 2003; Ting and McKay, 2007; Tresch

and Jarc, 2009). While there is general consensus that structure

exists in motor patterns, how they arise, whether they reflect

neural structure, and whether they are functionally relevant are

sources of lively debate. We argue that motor modules arise

from neural plasticity in spinal and supraspinal structures,

which is shaped by regularities in biomechanical interactions

with the environment. Different expressions of motor modules

across individuals may reflect how each individual explores

a potentially difficult-to-search and nonlinear set of neurome-

chanical solutions for movement. As motor modules are refined
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Figure 1. Neuromechanics and Rehabilitation
Movement is influenced by both the neural and biomechanical systems of the
body and their interaction with the environment. Experience-dependent
plasticity shapes the individual-specific patterns that determine howwemove.
Novel rehabilitation paradigms seek to restore motor function by enhancing
endogenous neural plasticity through a number of mechanisms and to sculpt
the plasticity via task-specific training.
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over a lifetime, they may appear objectively optimal based on

minimizing movement time, energy, or some other feature of

the movement (Todorov and Jordan 2002; Scott, 2004, 2008;

Todorov, 2004; Shadmehr and Krakauer, 2008). However, it is

likely that motor modules are ‘‘slop-timal,’’ i.e., only locally

optimal or just ‘‘good enough,’’ to balance competing costs of

reliably generating motor actions versus exhaustive exploration

or computation to produce new behaviors.

In the second section, we address how motor modules may

provide a powerful framework to address current limitations

that impede the development of more effective and individual-

ized rehabilitation therapies (Giszter and Hart, 2013; Safavynia

et al., 2011; Santello and Lang, 2014). Current clinical motor tests

are focused on overall motor functions, such as walking speed,

and are not intended to distinguish different task-specific deficits

that underlie impairments (Cheeran et al., 2009; Mancini and

Horak, 2010; Pardasaney et al., 2012). However, more directed

task-specific training may be necessary to harness use-depen-

dent neural plasticity, a common basis for rehabilitation across

different neurological disorders (Figure 1). The level of motor

disability may be most important for devising optimal strategies

to fit individual patient needs (Dobkin, 2009). Here, we give three

clinical examples showing how motor modules can help to (1)

identify individual-specific motor impairments, (2) assess the

effects of rehabilitation, and (3) provide a framework for develop-

ment of targeted therapies that enhance neural plasticity and

sculpt motor recovery. We postulate that motor module organi-

zation is altered after CNS injury and disease (i.e., spinal cord

injury [SCI], stroke, and Parkinson’s disease [PD]) and that

quantifying this disruption may provide tremendous insight into

individual-specific motor impairments as well as mechanisms

of learning and refining motor behaviors during rehabilitation

(Figure 1).

Neuromechanical Principles Underlying Motor Module

Organization

In this first major section of the essay, we elaborate on the

characteristics of biomechanical systems that may lead to a

modular organization for motor control. Modularity can be

observed at many levels of motor performance, from muscle,
kinetics, and kinematic measures, and in both the spatial and

temporal organization of such measures. We focus solely on

what we consider to be the most basic level of modularity:

time-synchronized activity of multiple muscles or motor units

throughout the body. This level of modularity addresses a basic

biomechanical constraint: muscle effects on motor output

cannot be considered in isolation but require the coordination

of multiple muscles throughout the body (Chiel et al., 2009; Dick-

inson et al., 2000; Hooper and Weaver, 2000; Nishikawa et al.,

2007; van Antwerp et al., 2007). Upon this most basic level of

modularity, structure and variability in timing, kinetics, and kine-

matics of movements can be constructed.

Typically, motor modules are characterized through linear

decomposition techniques that are useful but may not fully

capture the true complexity of motor modules. Using signal

processing methods, such as principal-component analysis

(PCA), independent component analysis (ICA), and nonnegative

matrix factorization (NMF) (Lee and Seung, 1999; Ting and Chva-

tal, 2010; Tresch et al., 1999, 2006), motor signals can be

decomposed into underlying motor modules, also referred to

as muscle synergies, that reflect consistent patterns of multi-

muscle coordination that generate specific actions (Figure 2).

More physiological and feature-based representations have

been found in both sensory systems (Lee and Seung, 1999;

Olshausen and Field, 2004) and motor control (Ting and Chvatal,

2010; Tresch et al., 2006) when using techniques that do not as-

sume orthogonality (e.g., PCA). In neural systems, non-negativity

also appears to be important to reflect spiking activity of neu-

rons. While all of the current decomposition techniques assume

linear combinations ofmotormodules, it is unlikely that themotor

modules are linearly additive in a global sense. However, using

suchmethods can still be useful for revealing locally linear mech-

anisms that the nervous system may use to represent complex

nonlinearities in the environment (Olshausen and Field, 2004).

Although current computational methods to analyze motor

patterns have many limitations (Burkholder and van Antwerp,

2013; Steele et al., 2013; Ting and Chvatal, 2010; Tresch and

Jarc, 2009; Zelik et al., 2014) and may not be directly interpret-

able in terms of neural mechanisms, they still provide useful tools

for describing and understanding structure in motor coordina-

tion. Advances in computational methods are ongoing but will

not be discussed further here.

Principle of Motor Abundance: Motor Modules Reflect Specific

Motor Solutions Selected from an Abundance of Possible

Solutions. For any given motor task or behavior, there are

generally a large number of ‘‘motor-equivalent’’ solutions that

can produce similar or functionally equivalent behaviors.

Because many motor solutions exist, there is no single correct

or optimal motor pattern, i.e., different motor modules can

equivalently perform the same motor task. This ability to choose

frommany solutions underlies the adaptability and robustness of

biological systems. The concept of motor abundance (Latash,

2012) is critical for understanding the variations in movement

solutions and variability in movements that are observed (Scholz

and Schöner, 1999; Scholz et al., 2000; Valero-Cuevas et al.,

2009). Within these ‘‘motor-equivalent’’ solutions, there may be

some that are less desirable than others for any number of

reasons, including energetics, stability, and generalizability
Neuron 86, April 8, 2015 ª2015 Elsevier Inc. 39



Figure 2. Motor Modules Define Functional
Co-activation of Muscles
For walking, descending commands from the
spinal cord, brainstem, and cortex can modulate
spinal motor modules. Each motor module
selectively co-activated multiple muscles with a
characteristic level of activation (colored bars) to
produce the mechanical output needed to achieve
a given locomotor subtask (Clark et al., 2010;
Neptune et al., 2009). The particular timing of
recruitment (colored lines, top right) can vary
across steps, across gait speeds, and environ-
mental demands. The activity of individual mus-
cles express unique temporal patterns of activity
(black lines, bottom right) due to their different
contributions to different motor modules (colored
lines, bottom right).

Neuron

Perspective
across tasks. However, finding optimal solutions may be

challenging, as muscle activation patterns have complex and

nonlinear relationships to biomechanical functions (Cullins

et al., 2015).

Motor modules may reflect ‘‘good-enough’’ solutions for

movement that provide stable and predictable motor outputs.

Experimental evidence demonstrates that individuals exhibit

consistent motor modules in seemingly variable muscle activa-

tion patterns across multiple muscles and motor behaviors, as

well as across species (Bizzi et al., 2008; Chvatal and Ting,

2013; Chvatal et al., 2011; d’Avella et al., 2003; Giszter et al.,

2007; Ting, 2007; Ting and McKay, 2007; Torres-Oviedo

and Ting, 2010). Different stable solutions can be identified

throughout a lifetime. For example, default patterns for move-

ment are established in the embryonic stage, during which spon-

taneous motor activity, such as kicking and flailing, is observed

(Bekoff, 2001). These movement patterns are available at birth

and can allow a fawn to run minutes after it is born. Human

infants are born with the capacity for stepping and kicking

(Yang et al., 2004); through exploration (Smith and Thelen,

2003), movement patterns are refined, and more are created

throughout development (Dominici et al., 2011). Models of spinal

circuitry and biomechanics suggest that ‘‘good-enough’’ (i.e.,

suboptimal) solutions for movement can be found in just a few

iterations of random searching (Tsianos et al., 2014); once

found, these solutions are likely to be reinforced by use-depen-

dent neural plasticity.

Principle of Motor Structure: Motor Modules Reflect Biomechan-

ical Task Relevance. The biomechanical affordances and

constraints of the body and environment shape the allowable
40 Neuron 86, April 8, 2015 ª2015 Elsevier Inc.
structure and variability of motor pat-

terns. Biomechanical affordances refer

to the types of movements that are facili-

tated by body structure. Body structures

define ways of moving that require little

energy or neural control to produce. For

example, simulations and robots that

mimic the structure of the body can pro-

duce walking-like behaviors with little

energy and without muscles or joint actu-

ators (Collins et al., 2005; Kuo, 2007).
Biomechanical constraints refer to movements that may be

difficult or impossible to achieve with a given structure, or they

refer to the required neural input to achieve a movement, e.g.,

the precise timing or activity of a particular muscle. In walking,

biomechanical constraints limit knee extension and place con-

straints on step length in backward walking. The basic structure

of motor patterns during a particular gait is defined by the

sequence of subtasks: placing the foot on the ground, pushing

against the ground for propulsion, and swinging the limb for-

ward. Each subtask defines certain co-activation patterns of

muscle activation across the limb (van Antwerp et al., 2007;

Zajac, 2002). Biomechanical affordances and constraints deter-

mine how precise or variable these motor patterns must be. For

example, in a simulation of single-legged locomotion, biome-

chanical ‘‘bottlenecks’’ and ‘‘don’t-care’’ regions were identified

that predicted the precision and variability of locomotor solutions

found by a genetic algorithm. The highest fitness solutions all

exhibited precise timing at the ‘‘bottleneck’’ of placing the leg

and pushing it backward, which had a large effect on movement

efficiency. In contrast, the solutions showed high variability in the

‘‘don’t-care’’ region late in the stance phase, during which the

model leg continued to move backward but was no longer able

to exert force (Beer et al., 1999). For example, distributions of

motor neuron activation duration vary from one individual to

another in Aplysia feeding behavior, but when motor neuron

duration and timing play a critical role in a behavior such as the

animal closing its grasper to retract food, the distributions

become similar across all individuals (Cullins et al., 2015). In

contrast, there is high variability in the duration of motor neuron

activity to close the grasper if the animal fails to grasp food, as
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the motor neuronal activity is no longer functionally relevant.

Similar examples across many species and motor behaviors

can be found where motor activity that does not directly

contribute or interfere with the task at hand is found to be highly

variable both within and across individuals (Bernstein, 1967;

Scholz and Schöner, 1999; Valero-Cuevas et al., 2009).

Motor modules may reflect biomechanical structures and the

required coordination of neural signals to perform motor tasks.

Motor modules identified experimentally have been associated

with biomechanical functions necessary for walking and balance

(Allen and Neptune, 2012; Chvatal et al., 2011; Clark et al., 2010;

Neptune et al., 2009; Safavynia and Ting, 2013; Ting and Mac-

pherson, 2005; Torres-Oviedo et al., 2006). In simulations, motor

modules have been shown to emerge based on optimal control

of multi-jointed and multi-legged systems and produce near-

optimal motor performance (Berniker et al., 2009; Chhabra and

Jacobs, 2006; Kurtzer et al., 2006; McKay and Ting, 2012;

Todorov and Jordan, 2002). Modular control can reproduce

essential features of movement in simulations of a frog leg

(Berniker et al., 2009), human walking (Allen et al., 2013; Allen

and Neptune, 2012; Neptune et al., 2009), and cat balance con-

trol (McKay and Ting, 2012). Thus, motor modules may reflect

an interaction between the neural and motor systems and may

often align with coordination patterns that optimize energetic

efficiency, given biomechanical constraints (De Groote et al.,

2014; McKay and Ting, 2012; Steele et al., 2013). Becausemotor

structure reflects biomechanical task relevance, similarities in

motor modules for the same task will exist. For example, there

are substantial similarities in the most active muscles of motor

modules used for walking at different speeds and for different

balance strategies, although inter-individual differences also

exist (Chvatal et al., 2011; Clark et al., 2010). As discussed later,

biomechanical constraints cannot uniquely determine motor

module structure in most cases.

Principle of Motor Variability: Motor Module Variations

across Individuals Are High if the Effect on Motor Output Is Low.

Variations and variability in motor control also depend on biome-

chanical affordances and constraints based on the reasonable

assumption that the nervous system only regulates motor out-

puts that are directly relevant to task goals. Using biomechanical

models in conjunction with optimality principles has predicted

higher variability in ‘‘good-enough’’ regions of behavior, e.g.,

the uncontrolled manifold, theory of minimum intervention, and

optimal feedback control (Bernstein, 1967; Scholz and Schöner,

1999; Todorov and Jordan, 2002; Valero-Cuevas et al., 2009).

Biomechanical models can be used to determine the degree to

which variability can occur without having a deleterious effect

on performance. For isometric force production, the degree of

variation in muscle activity in the finger is relatively constrained,

allowing for little variability (Kutch and Valero-Cuevas, 2012; Va-

lero-Cuevas et al., 1998), whereas the range of possible varia-

tions is much greater in the cat hindlimb (M.H. Sohn and L.H.

Ting, 2013, Am. Soc. Biomech., conference). These differences

appear to match the variability in muscle activity measured

experimentally. Variation in motor patterns may also endow a

limb with other characteristics that may or may not matter to

the movement. For example, increasing muscle activity to

improve limb stability may reduce the need for precise neural
control (Bunderson et al., 2008; Franklin et al., 2004; M.H.

Sohn and L.H. Ting, 2013, Am. Soc. Biomech., conference).

Other equivalent solutions may be similar in energetics or

stability yet differ in motor pattern, causing subtle differences

in movement (M.H. Sohn and L.H. Ting, 2013, Am. Soc. Bio-

mech., conference).

As a consequence of allowable variations to produce similar

tasks, differences in the structure and number of motor modules

that are specific to individuals have been identified across spe-

cies and motor behaviors. The consistency of motor modules

across biomechanical conditions within an individual suggest

that they do not emerge from ‘‘online’’ optimization based on

biomechanics but represent preferred patterns of muscle coor-

dination that are modulated across a class of movements. For

example, the structure of motor modules for walking share

similarities in the most active muscles, but the contributions of

other muscles can vary substantially (Chvatal and Ting, 2012;

Clark et al., 2010). Moreover, these same motor modules are

recruited across walking speeds and even in response to pertur-

bations imposed during walking (Chvatal and Ting, 2012; Oliveira

et al., 2012). Motor modules are used in kicking, swimming, and

jumping in frogs and across different postural behaviors in cats

and humans (Chvatal and Ting, 2013; Chvatal et al., 2011;

Giszter et al., 2007; Hart and Giszter, 2004; Roh et al., 2011;

Torres-Oviedo et al., 2006; Tresch et al., 1999), suggesting that

they form a repertoire of whole limb actions. Motor modules in

postural control can vary in structure and number across individ-

uals and are preserved across different biomechanical configu-

rations. Motor modules for weight support are characterized

by extensor muscle activity, but the degree of activity in the

hamstring muscles can vary substantially. Because motor vari-

ability is high where the effect on motor output is low, variations

in motor modules may affect secondary characteristics of move-

ment. Differences in motor modules can also reflect differences

in kinematic strategies for postural control, and motor modules

specific to one individual may not adequately reproduce muscle

activity in another (Torres-Oviedo and Ting, 2010). Indeed, the

accuracy of human walking simulations is improved when indi-

vidual-specific motor modules are included (Walter et al., 2014).

Principle of Individuality: Motor Modules Are Shaped by History

and May Generate Individual Movement Styles. It has recently

emerged as a general principle that individual—and not aver-

aged—motor solutions solve neuromotor problems. Individuals

may have their own ‘‘motor program styles,’’ i.e., they may

show significant individual variations in outputs of the motor

system that are both consistent within a given animal and differ

from one individual to another. Variations in motor program

styles have been observed in a wide variety of animals (Calabr-

ese et al., 2011; Golowasch et al., 2002; Marder and Goaillard,

2006; Prinz et al., 2004), as well as in humans (Nussbaum and

Chaffin, 1997; Torres-Oviedo and Ting, 2010; Welch and Ting,

2008). Not all of these differences can be attributed to biome-

chanics, as the fidelity of human walking simulations using

generic biomechanical models can be improved through the

consideration of individual movement patterns (Ting et al.,

2012; Walter et al., 2014), and differences in the weightings of

joint torque production can be used to synthesize different styles

of walking (Liu et al., 2005). This illustrates that biomechanics is
Neuron 86, April 8, 2015 ª2015 Elsevier Inc. 41
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insufficient to determine motor patterns, allowing for many func-

tionally equivalent solutions.

Developmental processes, motor exploration, experience,

and training all play a role in shaping individual movement styles.

Motor exploration and variability are essential to the discovery of

movement patterns that produce useful motor functions and do

not necessarily follow rules of engineering approaches (Herzfeld

and Shadmehr, 2014; Huang et al., 2008; Loeb, 2012; Smith and

Thelen, 2003; Wu et al., 2014). The properties of the neurome-

chanical system may be such that only a few variations are

required to identify ‘‘good-enough’’ solutions (Tsianos et al.,

2014). However, even after learning more optimal movement

styles, subjects tend to revert to suboptimal, habitual patterns

(de Rugy et al., 2012; Ganesh et al., 2010; Snaterse et al.,

2011). Movement strategies for everyday tasks may appear

optimal because they have been refined over both evolutionary

time as well as a lifetime. Extensive, long-term training may be

necessary to identify globally optimal movement strategies,

which are sought by elite athletes, dancers, and musicians.

Because motor history shapes individual movement styles,

motor modules may differ and become different due to motor

experience and training. Indeed, different movement patterns

for grasping may be identified in musicians, shaped by their spe-

cific training (Gentner et al., 2010), and different musicians

display different movement styles (Furuya and Altenmüller,

2013). This perspective on how we learn to move is consistent

with activity-dependent plasticity after neural injury that is

altered by the specificity, intensity, difficulty, and complexity of

motor training (Adkins et al., 2006; Fisher and Sullivan, 2001;

Will et al., 2004). Similar challenges are posed by sports or class-

room learning, where stable, slop-timal solutions may be difficult

to change (Chi and Roscoe, 2002; Handford, 2006). For

example, changing movement patterns is a risky endeavor for

elite athletes; TigerWoods required 2 years without winning tour-

naments to reshape his golf swing (Eden, 2013). Understanding

the costs of changing movement strategies is likely to play an

important role in developing effective rehabilitation therapies.

As room for variability increases, the seemingly fixed and

objective nature of motor modules dissolves. The more biome-

chanical constraints exist, the fewer opportunities there are for

individual variation, and the more motor modules tend to look

energetically optimal. When characterizing the optimality of

motor patterns in both neurologically normal and motor-

impaired individuals, it must always be asked: ‘‘with respect to

what’’? Although differences in walking style exist across

gender, social status, and culture (Hall, 1976), these differences

aremuch less than those observed in speech, a less biomechan-

ically constrained motor task. Verbal communication can be

equally good using different language-specific phonemes

(Kuhl, 2004), which can be thought of as motor modules for

speech. The degree of variability is directly related to the fact

that variability in sound production does not cause the same

devastating effects as in walking, where unfit variations may

lead to a fall. Motor modules in speech production (Elemans,

2014; Gick and Stavness, 2013) may facilitate native-language

speech but cause distinctive accents and pronunciation errors

when speaking a foreign language. Similarly, motor accents in

bodily movements may also cause differences in a person’s
42 Neuron 86, April 8, 2015 ª2015 Elsevier Inc.
ability to learn newmotor tasks and thus be an important consid-

eration during rehabilitation.

Principle of Multifunctionality: Motor Modules May Mediate

Multifunctionality of Muscles for Movement. While motor mod-

ules themselves are invariant, they do not produce stereotyped

actions. Rather than constrain the nervous system, the ability

to combine modules flexibly actually facilitates adaptation and

learning. Variability observed across different types of behaviors

and trial-by-trial variability can be accounted for by varying

combinations of motor modules (Cheung et al., 2005; Hart and

Giszter, 2004; Roh et al., 2011; Torres-Oviedo and Ting, 2007;

Tresch et al., 1999). Rather than random noise in individual mus-

cles or trajectories, variability across instances of movement

may thus reflect differences in the descending drive to stored

movement patterns (Churchland et al., 2006) that could facilitate

motor exploration (Huang et al., 2008; Wu et al., 2014). Indeed,

learning to perform a novel task is faster if it can be achieved

by altering recruitment of a smaller number of motor modules

rather than learning new control strategies for individual muscles

(Berger et al., 2013). Consistent with findings in spinal central

pattern generators (CPGs) where temporal rhythms can differen-

tially recruit groups of muscles (McCrea and Rybak, 2008; Stein

and Daniels-McQueen, 2002), this suggests that the temporal

commands to motor modules can be more readily adapted

than the modules themselves (McKay and Ting, 2012).

Although modularity is often taken to mean a reduction in

dimension, this is true only within the context of specific behav-

iors. Because a few muscles mediate many motor behaviors,

many motor modules may exist to handle different motor behav-

iors or contexts. Considering the very large number of different

tasks that an animal or human may engage in over a lifetime,

many different patterns are required (Zelik et al., 2014). Dimen-

sional reduction may be an artifact of current algorithms for

identifying modularity that work by reducing the dimensionality

of data. The multifunctionality of limbs and bodies is critical

for facilitating a large motor repertoire. If one considers just the

simple on/off combinations of muscle activation patterns among

n muscles, one obtains 2n possible joint torque patterns. Thus,

the potential behavioral repertoire for coordination of multiple

muscles is much greater than the total number of muscles or

even motor units. (Chiel et al., 2009). When one further considers

differences in level of muscle activation and relative timing of

activations, the number of possibilities increases even further.

If these possibilities are, in turn, combined with the effects of

changes in posture, environment, or movement that can also

modulate muscle function, the possibilities become very large.

Consider the simple motor task of getting up from a chair,

walking, turning, and then sitting down: the muscles of the

body must be coordinated in a myriad of different patterns to

accomplish all of the necessary subtasks. During challenging

athletic activities or dancing, even more motor subcomponents

must be mastered and properly deployed.

A large set of motor modules across the behavioral repertoire

may facilitate multifunctionality, allowing the same muscles to

perform different functions in different behavioral contexts.

While having more motor modules than muscles may seem

counterintuitive, a high-dimensional representation of actions

defined by combinations of muscles may be more directly
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related to the resulting motor output. In contrast, the effects of

individual muscles are highly nonlinear, variable, and context

dependent. Others have noted this previously: Hughlings Jack-

son (1889) noted that the muscles of the hand were represented

in lower motor centers ‘‘in numerous different combinations, as

simple and very general movements,’’ and in the highest centers,

‘‘the same muscles are represented (re-re-represented) in innu-

merable different combinations, as most complex and most

special movements.’’ The implication is that these areas are

not simultaneously active but represent the whole repertoire of

hand movements. Physiologically, these many representations

of movement could be mediated by neurons of the cortex,

reticular formation, and spinal cord project to multiple muscles

throughout the body. As an example, spinal motor neurons

specialized for activating hip flexors in limb withdrawal reflex

are not generally active in multiple types of limb movements

(Berkowitz, 2007).

As a consequence, as representations of useful ensembles of

muscles that produce actions, motor modules may improve the

rapidity and robustness of searches for newmovement patterns.

Similar principles have been proposed to govern visual and

sensory processing (Olshausen and Field, 2004) where different

streams of visual input signals (e.g., retinal activity, or pixels) can

represent the same object (cf. principle of motor abundance, dis-

cussed earlier). It has been proposed that sensory processing

is facilitated by representations of the inherent structure, or fea-

tures, in complex natural scenes (cf. principle of motor structure,

discussed earlier). As the number of features far exceed the

number of visual inputs, such representations form an overcom-

plete set of basis vectors that have more direct relationship to

the objects in the environment than individual pixels (cf. principle

of multifunctionality, discussed earlier); such principles have

also been identified in signal processing as a way to handle

nonlinearities (Hastie et al., 2005; Olshausen and Field, 2004).

In the motor system, the advantage is that motor modules can

be recruited based on desired whole-limb or whole-body func-

tions rather than requiring specific muscles activations to be

computed (Safavynia and Ting, 2012, 2013; Ting and Macpher-

son, 2005; Ting and McKay, 2007). Moreover, among a vast dic-

tionary of representations, only a few are used at one time to

represent a given image or action, a phenomenon referred to

as sparse coding (Olshausen and Field, 2004). Sparse coding

is consistent with the existence of sensory and motor maps in

which only neurons in small regions of the maps are active at

any given time. Sparse representations have been proposed to

enhance the efficiency of sensory processing andmotor adapta-

tion (Fiete et al., 2004; McKay and Ting, 2012; Ting and McKay,

2007), both of which are shaped by individual experience and

developmental processes (cf. principles of variability and individ-

uality, discussed earlier). Similarly across biology, arguments for

modularity have been made based on their ability to improve

adaptability and robustness while decreasing connectivity costs

in neural networks (Clune et al., 2013; Wagner et al., 2007).

Are Motor Modules Encoded by the Nervous System? While

the arguments presented are largely theoretical and indirect,

some evidence for motor modules at a neurophysiological level

does exist. Although it is possible for synchronous activity of

motor neurons to arise without being directly linked to the
same presynaptic neuron, the divergent structure of neurons in

the cortex, brainstem, and spinal cord projecting to motor

neurons and pre-motorneuronal pools can provide one type of

neural substrate for the type of spatial modularity in muscle

coordination discussed here. Studies stimulating the spinal

cord and cortex reveal correlated outputs across motor pools

(Overduin et al., 2012; Saltiel et al., 2001). During natural move-

ment, shared common drive to motor neurons of the eye (Joshua

and Lisberger, 2014), leg (Hart and Giszter, 2010; Krouchev

et al., 2006), arm (Holdefer and Miller, 2002), and pelvic muscles

(Asavasopon et al., 2014) has been demonstrated. Modularity in

the temporal patterns of motor outputs (d’Avella et al., 2003;

Flash and Hochner, 2005; Hart and Giszter, 2004; Ivanenko

et al., 2003; McCrea and Rybak, 2008) likely have different,

more dynamic representations in the nervous system such as

in CPGs (McCrea andRybak, 2008; Stein andDaniels-McQueen,

2002) Proprioceptive sensory feedback can also play a role in the

expression of motor modules, providing inputs that are struc-

tured by the mechanics of the musculoskeletal system and

environment in some cases (Cheung et al., 2005; Kutch and

Valero-Cuevas, 2012). However, the existence of motor modules

in the absence of sensory feedback (Kargo and Giszter, 2000;

Kargo et al., 2010; Cheung et al., 2005), during the production

of voluntary movements using visual feedback (d’Avella et al.,

2011), or that is at odds with sensory inflow (Chvatal et al.,

2013; Safavynia and Ting, 2013; Torres-Oviedo et al., 2006) pro-

vides some evidence for the neural encoding of some motor

modules. Evidence suggests that sensory feedback can modu-

late temporal patterning of recruitment to relatively fixed motor

modules across different types of behaviors (Hart and Giszter,

2004; Kargo et al., 2010; McCrea and Rybak, 2008; Stein and

Daniels-McQueen, 2002). Currently, the neural substrates for

motor modularity remain largely elusive; however, studies of

neuromotor impairments affecting the spinal cord, motor cortex,

basal ganglia, and other neuroanatomical structures may help to

reveal the mechanisms of motor modularity.

Neuromechanics of Motor Impairment

and Rehabilitation

In the second major section of this essay, we turn to a consider-

ation of the implications of motor modules for understanding

motor impairment and their implications for rehabilitation.

Although neurological pathologies affect neural mechanisms

involved in movement, neuromechanical principles of motor

abundance, motor structure, motor variability, individuality, and

multifunctionality hold, whether in skilled experts or in individuals

with motor impairments. Deficits in motor module organization

can, in turn, provide a clearer understanding and assessment

of the nature of the motor impairments and how they can be

improved, providing rational targets for novel therapies. Many

of the current outcome measures, diagnostic techniques, and

clinical tests focus on overall motor function and lack the power

to answer fundamental questions (i.e., why, what, and how)

about a person’s deficits and ability to recover (Mancini and

Horak, 2010; Pardasaney et al., 2012). Testing the effectiveness

of novel therapies requires more specific methods to reveal

the heterogeneity of participants and characterize functional

neurophysiologic adaptations due to treatments (Dobkin,

2007). For instance, why does a rehabilitation treatment help
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Figure 3. Different Motor Modules Deficits and Improvements in SCI, Stroke, and PD
Colored bars represent motor modules, with the height of each bar representing the extent to which an individual muscle is part of that motor module. Color of
motor modules across conditions and/or populations (e.g., able-bodied to pre-SCI) represents similarity between motor modules.
(A) SCI disrupts both descending connectivity and spinal organization. Accordingly, motor modules resembling those found in able-bodied individuals are
reduced after incomplete SCI, and additional motor modules characterized by co-contraction can emerge (data not shown) (Hayes et al., 2014a). After reha-
bilitation, motor modules may be reshaped and better resemble those in able-bodied individuals (H.B. Hayes et al., 2012, Soc. Neurosci., abstract). In animals
with complete spinal cord transection, a few motor modules can account for a large degree of variance in muscle activity for reactive balance in response to
support surface translations (Chvatal et al., 2013). In the intact condition, the 95% confidence intervals of the total variance explained by an increasing number of
motor modules are significantly different from the 95% confidence intervals of the total variance explained in randomly shuffled data, indicative of consistent

(legend continued on next page)
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some but not others? What motor strategies were changed due

to recovery or treatment? Furthermore, motor modules provide

a noninvasive assessment of the structure and variability of

motor coordination that can be linked to scientific knowledge

about the functions of the neural areas affected by injury or

impairment. These can be combined with a neurophysiological

measure of neural connectivity (Belda-Lois et al., 2011; Krakauer

et al., 2012; Whitall, 2004) that cannot typically be identified

during movements, especially gait and balance tasks. Tracking

changes in motor modules through recovery and rehabilitation

can provide assessments of improvement as well as insights

into the neural mechanisms of motor plasticity (Giszter and

Hart, 2013; Safavynia et al., 2011; Santello and Lang, 2014).

As individual differences in motor modules are shaped

through experience, appropriate rehabilitative training may be

necessary to target individual-specific motor deficits in conjunc-

tion with novel plasticity-enhancing adjuvant therapies (Hayes

et al., 2014b; Lovett-Barr et al., 2012). Use-dependent neural

plasticity, the capacity of the nervous system to adapt in

response to experience, is a critical yet relatively unexplored

mechanism underlying rehabilitation (Kleim and Jones, 2008;

Nudo et al., 1996a, 1996b, 2001; Wittenberg, 2009; Wittenberg

and Schaechter, 2009). While plasticity plays a role in rehabili-

tation, endogenous and injury-induced neural plasticity only

enables partial spontaneous recovery of motor function (Gosh-

garian, 2003; Kaegi et al., 2002), and the extent of recovery is

slow, variable, and frustratingly limited (Raineteau and Schwab,

2001). However, many exciting new developments in rehabilita-

tion science are targeted at enhancing neural plasticity, including

the use of stem cells (Isacson and Kordower, 2008; Lu et al.,

2014; Takahashi and Yamanaka, 2006), neural stimulation

(Benazzouz and Hallett, 2000; Hallett, 2000; Ruge et al., 2011;

Stefan et al., 2000), therapeutic exercise (Courtine et al., 2009;

Edgerton et al., 2006; Edgerton and Roy, 2009; Vaynman et al.,

2003; Weishaupt et al., 2013), and acute intermittent hypoxia

(Baker-Herman et al., 2004; Wilkerson and Mitchell, 2009). All

of these therapies can provide a generalized enhancement

of neural plasticity, either locally or profusely, enhancing the

potential for individuals to reorganize relevant neural circuitry

necessary to improve movement (Kleim and Jones, 2008), but

all of these therapies require this plasticity to be appropriately

directed to improve motor function.

In the sections that follow, we discuss motor modules for

walking and balance in three neurological disorders affecting

different parts of the CNS: SCI, stroke, and PD, each of which

may provide insights to the neural bases of motor modules

(Figure 3). Each of these neural impairments affects a specific
structure in muscle activity (red vs. blue lines). However, after complete spinal t
modules do not differ from that obtained by randomly shuffling data, suggesting
(B) Stroke disrupts corticospinal drive and impairs independent recruitment of joi
those found in able-bodied individuals. Merging can occur between different mo
rehabilitation, splitting of motor modules is hypothesized to occur that would be
(C) PD impairs basal ganglia function and is associated with inappropriate selec
dividuals with PD, the number of motor modules in walking and reactive bala
Roemmich et al., 2014). However, in young, healthy adults, motor modules for reac
suggesting a common subcortical origin for the recruited motor modules. In contr
reactive balance and walking can appear to be completely distinct, consisten
rehabilitation, motor modules may become more similar across tasks, suggestin
Congress of Biomechanics, abstract).
part of the nervous system that has a different detrimental effect

on the walking ability, reflecting the distributed control of posture

and gait throughout the CNS (Takakusaki, 2013). Interneurons in

the spinal cord may encode motor modules for locomotion and

other lower limb tasks (Hart and Giszter, 2010; Roh et al.,

2011; Saltiel et al., 2001), which can be flexibly recruited by

spinal structures regulating the timing of locomotor patterns

(McCrea and Rybak, 2008; Stein and Daniels-McQueen, 2002).

Motor cortical activitymay bemore heavily involved during forms

of walking requiring cortical inputs, such as visually guided

obstacle crossing (Drew et al., 2002). Cortical activity may

encode motor modules as well (Capaday, 2002; Ethier et al.,

2006), and/or recruit spinal motor modules (Rathelot and Strick,

2009). Spinal cord lesions affect both corticospinal connectivity,

as well as the organization of the spinal cord below the site of the

lesion, and can therefore affect the encoding and recruitment of

modules in the spinal cord (Giszter and Hart, 2013; Roh et al.,

2011; Tresch et al., 1999). It is also likely that there are separate

and complementarymotormodules encoded in cortical areas for

both upper and lower limbmovement (Hughlings Jackson, 1889;

Rathelot and Strick, 2009) as well as in reticular formation in the

brainstem for simple arm movements (Riddle and Baker, 2010;

Zaaimi et al., 2012), and for postural control (Deliagina et al.,

2008; Schepens et al., 2008). Stroke may impair cortical motor

modules as well as cortical recruitment of spinal motor modules.

The basal ganglia, which are affected by PD, may regulate the

appropriate selection ofmotor modules in cortical and brainstem

areas. In the following sections, we will discuss the different

impairments in motor modules in (SCI, stroke, and PD), and

describe how targeted rehabilitative therapies may improve

modular organization.

Loss of Motor Modules in SCI. A few reports suggest that

motor modules after SCI are lost or abnormally structured. The

location of injuries to the spinal cord are highly variable,

damaging and sparing different parts of the spinal cord and cor-

ticospinal connections that contribute to walking. Nearly 75%

of persons with incomplete SCI regain some walking capacity

(van Hedel et al., 2009) using assistive devices but show little

progression to unsupported overground walking (Field-Fote

and Roach, 2011; van Hedel and Dietz, 2010). After incomplete

SCI, the number of motor modules used in walking is reduced

(Figure 3A) in both children and adults (Fox et al., 2013; Hayes

et al., 2014a). While some of the motor modules resemble those

found in able-bodied individuals, incomplete SCI subjects ex-

hibited a wider range of module compositions, reflective of the

heterogeneity inherent in incomplete SCI. Many of the patholog-

ical modules were characterized by co-contraction of agonist
ransection, the 95% confidence intervals of the variance explained by motor
that no consistent structure exists (red vs. black lines).
nt actions. Motor modules for walking in the paretic leg are merged versions of
dules that are associated with different motor deficits (Clark et al., 2010). After
associated with improved performance.
tion of motor patterns as well as cortical hyperexcitability. Accordingly, in in-
nce are similar to those found in healthy individuals (Rodriguez et al., 2013;
tive balance to support surface translation and overground walking are similar,
ast, in individuals with PD who have balance impairments, motor modules from
t with increased attention and cortical control of gait. After adapted tango
g improved automatic, subcortical control of gait (J.L. Allen et al., 2014, World
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and antagonistic muscles (Fox et al., 2013; Hayes et al., 2014a),

and many were statistically distinct from modules identified in

healthy individuals (Figure 3A). Moreover, the expression of

pathological modules may be specific to each individual’s gait

deficits (Hayes et al., 2014a). In contrast, in animals with com-

plete spinal transection, modules for reactive balance responses

were absent (Chvatal et al., 2013), consistent with the need for

brainstem connectivity. In contrast, muscles could be vigorously

activated in an alternating rhythm by paw shake, which can

be spinally mediated. Although some modules were identified

from successful balance trials, they were not statistically

different from those extracted from randomly shuffled data

(Figure 3A), suggesting that there was no meaningful motor

structure in reactive balance after spinal transection (Chvatal

et al., 2013).

Motor module analysis can provide insight into the motor

deficits underlying impaired gait in SCI. For example, a module

for eccentric braking was absent in all individuals with

incomplete SCI, consistent with foot drop or slap that is

often observed clinically. In general, motor modules exhibited

abnormal co-activation of muscles and much broader temporal

recruitment across the gait cycle (Hayes et al., 2014a). This sug-

gests the use of a disorganized motor pattern, or patterns that

stabilize the limb, rather than biomechanically efficient motor

patterns that effectively achieve particular motor subcompo-

nents during different phases of gait. It is interesting that the

number of motor modules was reduced in able-bodied individ-

uals when they used assistive devices that were matched to

individuals with incomplete SCI. This suggests that the assistive

devices provide biomechanical functions that may obviate the

need to recruit particular motor modules. Analysis of such

data could provide insight into the changes in motor module

composition and recruitment necessary for improved motor

function.

Neural plasticity induced by a novel breathing treatment may

prepare the nervous system to be sculpted by task practice,

which could then be assessed by motor module analysis. A

promising strategy shown to improve respiratory and non-respi-

ratory motor function in incomplete SCI is to induce spinal cord

plasticity through exposures to modest bouts of low oxygen,

e.g., acute intermittent hypoxia (AIH). In rodent SCI models,

AIH induces motor plasticity (Dale and Mitchell, 2013; Dale-

Nagle et al., 2010; Lovett-Barr et al., 2012; Mitchell, 2008;

Vinit et al., 2009) through serotonin-dependent synthesis of

brain-derived neurotrophic factor (BDNF) (Baker-Herman et al.,

2004). Repetitive exposures to AIH elicits increased breathing

capacity and locomotor performance in rodents with SCI

(Lovett-Barr et al., 2012). In persons with incomplete SCI, a

single bout of AIH increases plantar flexor muscle activity and

torque output (Trumbower et al., 2012), and repetitive AIH over

5 consecutive days improves walking ability (Hayes et al.,

2014b). Daily AIH just prior to walking training yields greater

gains in walking function than either daily AIH or walking training

alone (Hayes et al., 2014b). However, it is not known whether the

effects of AIH simply boost the overall motor output or whether

the combination of enhanced plasticity and training could

improve the structure and recruitment of motor modules. Early

evidence suggests that the number of motor modules is
46 Neuron 86, April 8, 2015 ª2015 Elsevier Inc.
increased and the composition of motor modules changes after

AIH (H.B. Hayes et al., 2012, Soc. Neurosci., abstract).

Even when motor patterns are highly variable across repeti-

tions of the same movement, different movements, and across

individuals, motor modules provide a way to identify consistent

motor structure and track individual progress in rehabilitation.

Motor module analyses can distinguish completely random

organization in motor outputs from highly variable recruitment

of motor modules. The appearance of abnormal motor modules

in SCI may be unstable and could reflect either inappropriate

neural activity or a search process to re-learn useful motor coor-

dination patterns. Tracking participants longitudinally across

rehabilitation may inform how individuals search for and learn

new motor modules.

Merging of Motor Modules after Stroke. Motor modules pro-

videa valuableway to analyze theconsequencesof stroke,which

have effects that are quite different from those of SCI. The num-

ber ofmotormodules in individuals post-stroke is reduced on the

paretic side due to a merging of modules, revealing impairments

in whole-limb muscle coordination that correspond to observed

motor deficits in the leg (Cheung et al., 2012; Clark et al., 2010)

and arm. Merged modules reflect a decrease in the indepen-

dence of muscular control and are consistent with so-called

‘‘clinical muscle synergies’’ in stroke where abnormal coupling

of muscles across the limb are observed in both the upper (Dew-

ald et al., 1995) and lower extremities (De Quervain et al., 1996;

Knutsson and Richards, 1979; Shiavi et al., 1987). In the lower

limb, impaired motor modules appear to be due to a merging of

two modules typically identified in the non-paretic and control

legs (Figure 3B), consistent with a reduction in the independence

of corticospinal drive to the spinal cord. The number of motor

modules is correlated with reduced walking speed, clinical mea-

sures of balance and walking function, and biomechanical mea-

sures such as propulsion asymmetry and step length asymmetry

(Bowden et al., 2010; Clark et al., 2010). Moreover, motor mod-

ules are better correlated with gait and balance function than

are lower limb Fugl-Meyer assessments (Bowden et al., 2010)

typically used to measure the severity of motor impairment.

Even when the number of modules is not reduced, impairments

in the ability to flexibly recruit motor modules is also observed,

such as a reduced ability to take longer, higher, or quicker steps

(Routson et al., 2014), suggesting deficits in the descending

control of motor modules.

The characteristics of merged motor modules also predict

differences in gait impairments that may necessitate different

rehabilitation approaches. This is important because self-

selected walking speed is a common measure of rehabilitation

effectiveness, yet speed (a functional output) can be achieved

through different strategies (e.g., improved mechanical output

from the paretic leg, or increased reliance on mechanical output

from the nonparetic leg); within these strategies, a subject may

use different muscular coordination patterns (improvement in

neural control). One of the most common impairments post-

stroke is the inability to adequately recruit the ankle plantarflex-

ors of the paretic leg (Lamontagne et al., 2007; Turns et al., 2007),

which is important for directing ground reaction forces (Bowden

et al., 2006) and hip and leg extension (Peterson et al., 2010) in

walking. Among individuals with a reduction in motor modules,
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two different types of plantarflexor impairment (Figure 3B) were

found (Clark et al., 2010). Some were unable to independently

activate the plantarflexors and the proximal extensors (hip ab-

ductors/extensors and knee extensors). In contrast, others could

independently activate the plantarflexors but with inappropriate

timing; these individuals also merged control of the proximal

extensors with the hamstrings. Neuromechanical simulations

reveal that both impairments lead to inadequate propulsion

from the plantarflexors (Allen et al., 2013), suggesting that

improving paretic plantarflexor recruitment is a critical com-

ponent for rehabilitation. Furthermore, both groups also had

impaired swing of the paretic leg. In the first group (merged

plantarflexor control) this occurred prior to swing, whereas in

the second group (independent plantarflexor control but merged

proximal extensors and hamstrings), this occurred during

late swing. These results suggest that distinct rehabilitation

approaches may be prescribed based on neuromechanical

impairments identified through motor module analysis.

A novel gait retraining tool that combines fast treadmill walking

and functional electrical stimulation (FastFES) is being devel-

oped that is targeted to sculpting plantarflexor motor modules

for walking propulsion. Fast walking can help improve motor

function in several ways. First, moderate exercise can be a pro-

motor of motor plasticity (Lamontagne and Fung, 2004). Second,

it may encourage motor exploration by requiring participants to

walk at more challenging speeds and provides opportunity for

greater repetition (more steps) of practice, which enhances

use-dependent plasticity. Third, it emphasizes biomechanical

subcomponents of walking such as knee flexion and propulsion,

promoting specific sculpting of motor modules. Further task-

specific sculpting is provided through electrical stimulation of

plantarflexors to improve paretic propulsion; stimulation also

provides afferent feedback to enhance motor learning of new

motor modules (Kesar et al., 2011; Reisman et al., 2013).

FastFES has been shown to improve gait impairments, over-

ground gait function, activity, and participation in individuals

with chronic post-stroke hemiparesis (Awad et al., 2014a,

2014b; Knarr et al., 2013; Reisman et al., 2013) through improved

plantarflexion (Knarr et al., 2013). However, changes in muscle

activity, much less its structure, have not been measured after

FastFES.

Motor module analyses performed before and after rehabilita-

tion may provide a more in-depth and mechanistic evaluation

of the treatment effects, and this analysis can be used to further

optimize the dosage and ingredients of the intervention. For

example, in FastFES, motor module analysis could reveal

whether FastFES improves abnormal muscle coupling, e.g., an

increase in number of motor modules, and/or inappropriate

timing, e.g., improved motor module timing in both the targeted

(ankle plantarflexors) and non-targeted (proximal muscles).

Similarly, after a different gait training program, merging of the

plantarflexor motor module with other motor modules was

improved in some individuals but was still inappropriately

timed (Routson et al., 2013), suggesting the need for further

rehabilitation.

In the upper extremity, altered structure and temporal recruit-

ment of motor modules have also been observed after stroke

that may be related to altered neural pathways. Corticomotor-
neuronal cells in motor cortex can directly project to spinal motor

neuron pools, coordinating multiple muscles. However, they can

also project to spinal interneurons, which, in turn, coordinate

motor neurons (Rathelot and Strick, 2009). After stroke, reticulo-

spinal neurons in the brainstem can also provide a limited degree

of gross arm and hand function (Riddle and Baker, 2010; Riddle

et al., 2009; Zaaimi et al., 2012). Given this anatomy, changes in

the timing of largely intact motor modules in the upper extremity

may reflect altered corticospinal drive to interneurons (Cheung

et al., 2009). Merged motor modules in the paretic arm that

correlate to the degree of impairment (Cheung et al., 2012) could

reflect a greater impairment of corticospinal drive so that mod-

ules can no longer be independently activated; alternatively,

the merged modules could be due to compensatory arm control

from reticulospinal neurons. It is interesting that, in the long-term

chronic stroke survivors, even though somemergedmotor mod-

ules may still exist, other motor modules appear to fractionate,

or split, perhaps as a compensation to improve performance.

This may reflect greater capacity for experience-dependent

plasticity in intact cortical areas in contrast to the brainstem or

to the damaged cortical areas.

Altered Selection of Motor Modules in PD. PD affects the

functioning of the basal ganglia, which project to both cortical

and brainstem motor areas. In two studies, only moderate

decreases in motor modules (Figure 3C) were observed in PD

patients compared to healthy individuals. Since spinal and

cortical structures remain primarily intact in PD, it seems reason-

able that the structure and recruitment of motor modules is not

as severely and obviously impaired as in incomplete SCI and

stroke (Rodriguez et al., 2013). However (discussed later in

this section), the relationship of this deficit to basal ganglia

dysfunction remains unclear, as the number of motor modules

in PD was shown to be insensitive to the presence of dopami-

nergic medication that enhances basal ganglia function (Roem-

mich et al., 2014).

Deficits in walking and balance due to PDmay reflect inappro-

priate selection of motor modules, which, in turn, may cause

freezing of gait and postural instability. It has been proposed

that the basal ganglia selectively inhibit competing motor pro-

grams, allowing the appropriate selection of motor pathways

for movement (Mink, 1996, 2003). This hypothesis is consistent

with evidence that individuals with PD have difficulty with set-

shifting in both cognitive and motor tasks (Chong et al., 2000;

Dirnberger and Jahanshahi, 2013). Moreover, impairments in

cognitive set-shifting are associated with freezing of gait, which

has been characterized as an inability to switch from gait initia-

tion to walking (Factor et al., 2014). For postural control, this

results in motor patterns that are inappropriate for a given

biomechanical context. For example, after successful reactive

balance responses during standing, individuals with PD continue

to activate leg muscles when reacting to seated perturbations

(Horak et al., 1992). This perseverance may also be related

to other proposed functions of the basal ganglia, including

reward prediction (Schultz et al., 1997) and habit formation

(Yin and Knowlton, 2006). Therefore, it may be more important

to examine the recruitment of motor modules in PD in different

biomechanical contexts (Carpenter et al., 2004; Dimitrova

et al., 2004a; Horak and Macpherson, 1996). For example,
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individuals with PD fail to adequately decrease muscle activity

when changing from narrow to wide stance (Dimitrova et al.,

2004b) or in response to different perturbations (Chong et al.,

2000). Neuromechanical modeling studies demonstrate that

frontal plane balance necessitates a decrease in muscle activity

to maintain postural stability (Bingham et al., 2011). This inflexi-

bility in the ability to appropriately recruit motor modules may

contribute to postural instability and explain why individuals

with PD preferentially select a narrower stance (Dimitrova

et al., 2004a, 2004b).

Adapted tango (AT) rehabilitation, specifically targeted at

individuals with PD, may improve the appropriate recruitment

of motor modules through exercise and practice of complex

tasks. Increasing aerobic activity may enhance activity-depen-

dent neural plasticity (Alberts et al., 2011; Hirsch and Farley,

2009). A link between activity, mental engagement, and neural

pathways may be primed by dancing, which involves complex,

unfamiliar tasks such as walking backward, problem solving,

and movement improvisation. Furthermore, many individuals

with PD have deficiencies in planning and executing complex,

goal-directed behavior (Kliegel et al., 2005) and troubles with

internally generating movement (Low et al., 2002). Therefore,

alternating the leader and follower roles in AT may allow patients

to focus on external cues, bypassing the dysfunctional basal

ganglia and accessing circuitry involving the cerebellum, thal-

amus, and cortex. During dance, the need for creativity, the

exposure to novel steps, and the complex movement patterns

could, through the mechanisms of neural plasticity, expand

neural areas and improve neural pathways that facilitate move-

ment. Improvements in clinical measures of balance and gait,

as well as in symptom severity, have been demonstrated after

exercise for participants with PD (Corcos et al., 2013; Fisher

et al., 2008; Hirsch et al., 2003; Li et al., 2012; Smania et al.,

2010), including AT dance (Duncan and Earhart, 2012; Hackney

and Earhart, 2010). These improvements in mobility, balance,

spatial cognition, and disease severity may be retained for up

to 3 months after AT in individuals with mild to moderate PD

(Hackney and Earhart, 2009a, 2009b, 2010; Hackney et al.,

2007; McKee and Hackney, 2013).

Our early results suggest that changes in motor modules

identified after AT are consistent with an increased automaticity

of gait, shifting control of gait from cortical to subcortical struc-

tures. Increased cortical hyperexcitability is observed in animal

models of PD (Petzinger et al., 2010). This may result in

decreased automaticity of gait as control shifts from subcortical

to cortical structures in order to compensate for the impaired

ability of the basal ganglia to regulate ongoing movement

(Petzinger et al., 2010). The increased reliance on attentional,

i.e., cortical, mechanisms for gait and balance could underlie

difficulties in concurrently performing cognitive and motor tasks

in individuals with PD (Hackney and Earhart, 2009b; Muslimovic

et al., 2008; O’Shea et al., 2002). This inability to ‘‘walk and

talk’’ is also impaired in some older adults (Woollacott and

Shumway-Cook, 2002) and is associated with greater fall risk

(Camicioli and Majumdar, 2010). Motor module analysis alone

cannot directly reveal changes in the locus of motor control,

but comparison of motor modules across behaviors mediated

by different neural circuits can be instructive. For example,
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young, healthy adults used a common set of motor modules

for both overground walking and brainstem-mediated reactive

balance responses (Chvatal and Ting, 2013), as well as visually

guided anticipatory changes in gait that are likely to be medi-

ated by cortical mechanisms (Chvatal and Ting, 2012). These

motor modules may be organized in the spinal cord and

then recruited by spinal, brainstem, and cortical inputs. In a

small sample of individuals with mild to moderate PD, there

were no obvious deficits in the number and structure of motor

modules used in either walking or reactive balance. In contrast

to young, healthy adults, however, these modules were not

shared across behaviors. Moreover, after intensive AT, the

number of motor modules common to walking and reactive

balance were improved in some individuals (J.L. Allen et al.,

2014, Soc. Neurosci., abstract). These results suggest that

the automaticity of gait control by subcortical structures is

improved by AT (Figure 3C).

Motor module analysis coupled with neuromechanical

modeling may allow us to interpret muscle activity during

gait and postural tasks in PD patients and provide insight

into dysfunction in nondopaminergic brainstem areas impli-

cated in gait control that are now known to degenerate in

PD. Postural and gait impairments may be unresponsive to

dopaminergic pharmacotherapy, implying that they reflect

nondopaminergic pathophysiology—and likely result from

interactions between disease processes and compensatory

mechanisms and strategies (Bloem et al., 2004). Recent work

has also revealed deficits in other brain regions necessary

for locomotor control (Mena-Segovia et al., 2004) (Bloem

et al., 2001; Bohnen and Albin, 2011; Factor, 2008; Grabli

et al., 2012; Melton et al., 2006). In particular, recent attention

has focused on the neuroanatomy of brainstem areas including

the pedunculopontine nucleus (PPN), which degenerates in PD

as well as in related disorders such as progressive supranu-

clear palsy (Lee et al., 2000). The PPN provides cholinergic

input to the basal ganglia, brainstem, and spinal cord (Bohnen

et al., 2009) and is closely localized to brainstem regions that

have been identified in animal models as critical for regulating

gait and postural tone (Takakusaki, 2013), and it has been

implicated as an upstream cause of abnormal spinal reflexes

in PD patients (Meunier et al., 2000). Recent results suggest

that this region may represent a promising new target for

deep brain stimulation for postural and gait impairments and

falls (Moro et al., 2010).

In summary, motor module analysis in PD may facilitate an

understanding of the mechanisms of motor dysfunction and

rehabilitation in PD. By examining motor modules across

different movement types, a patient’s ability to appropriately

select and modulate motor patterns may be evaluated. Changes

in motor modules in response to various pharmacological

and neural stimulation interventions may also reveal the neural

mechanisms underlying motor deficits. Furthermore, they can

be used in conjunction with neurophysiological measures to

identify changes in the locus of neural control for movements

due to neural degeneration and rehabilitation. As a conse-

quence, the analysis of motor modules in PD and changes

through AT may also provide insights into basic mechanisms

of motor control and motor plasticity.
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We argue that examining motor modules in motor deficits

and during recovery may provide more definite answers to the

neural substrates of motor modularity. The degree to which

motor modules are encoded by specific neuroanatomical struc-

tures or rapidly emerge from neuromechanical interactions

remains an open question. Studying rehabilitation in specific

neural deficits can help to reveal how motor structure is altered

and re-learned through training, revealing processed underlying

coordinated neural control of movement. Although motor

modules as discussed in this essay may reflect only one aspect

of neuromotor control processes, they provide a valuable first

step toward analyzing motor patterns as a whole, allowing

the previously impenetrable complexity and variability of motor

signals to be managed. Computational methodologies that

reveal the structure and variability of motor modules could

lead to a powerful suite of diagnostic tools for movement that

could be used for clinical, preclinical, and high-performance

assessment of sensorimotor function. Ultimately, these insights

may drive hypothesis-driven neurophysiological and behavioral

experiments to identify how and where motor modularity arises

in the nervous system.
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Scholz, J.P., Schöner, G., and Latash, M.L. (2000). Identifying the control
structure of multijoint coordination during pistol shooting. Exp. Brain Res.
135, 382–404.

Schultz, W., Dayan, P., and Montague, P.R. (1997). A neural substrate of
prediction and reward. Science 275, 1593–1599.

Scott, S.H. (2004). Optimal feedback control and the neural basis of volitional
motor control. Nat. Rev. Neurosci. 5, 534–546.

Scott, S.H. (2008). Inconvenient truths about neural processing in primary
motor cortex. J. Physiol. 586, 1217–1224.

Shadmehr, R., and Krakauer, J.W. (2008). A computational neuroanatomy for
motor control. Exp. Brain Res. 185, 359–381.

Shiavi, R., Bugle, H.J., and Limbird, T. (1987). Electromyographic gait assess-
ment, Part 2: Preliminary assessment of hemiparetic synergy patterns.
J. Rehabil. Res. Dev. 24, 24–30.

Smania, N., Corato, E., Tinazzi, M., Stanzani, C., Fiaschi, A., Girardi, P., and
Gandolfi, M. (2010). Effect of balance training on postural instability in patients
with idiopathic Parkinson’s disease. Neurorehabil. Neural Repair 24, 826–834.

Smith, L.B., and Thelen, E. (2003). Development as a dynamic system. Trends
Cogn. Sci. 7, 343–348.

Snaterse, M., Ton, R., Kuo, A.D., and Donelan, J.M. (2011). Distinct fast and
slow processes contribute to the selection of preferred step frequency during
human walking. J. Appl. Physiol. 110, 1682–1690.

Steele, K.M., Tresch, M.C., and Perreault, E.J. (2013). The number and choice
of muscles impact the results of muscle synergy analyses. Front. Comput.
Neurosci. 7, 105.

Stefan, K., Kunesch, E., Cohen, L.G., Benecke, R., and Classen, J. (2000).
Induction of plasticity in the human motor cortex by paired associative stimu-
lation. Brain 123, 572–584.

Stein, P.S., and Daniels-McQueen, S. (2002). Modular organization of
turtle spinal interneurons during normal and deletion fictive rostral scratching.
J. Neurosci. 22, 6800–6809.
Neuron 86, April 8, 2015 ª2015 Elsevier Inc. 53



Neuron

Perspective
Takahashi, K., and Yamanaka, S. (2006). Induction of pluripotent stem cells
from mouse embryonic and adult fibroblast cultures by defined factors. Cell
126, 663–676.

Takakusaki, K. (2013). Neurophysiology of gait: from the spinal cord to the
frontal lobe. Mov. Disord. 28, 1483–1491.

Ting, L.H. (2007). Dimensional reduction in sensorimotor systems: a frame-
work for understanding muscle coordination of posture. Prog. Brain Res.
165, 299–321.

Ting, L.H., and Macpherson, J.M. (2005). A limited set of muscle synergies for
force control during a postural task. J. Neurophysiol. 93, 609–613.

Ting, L.H., and McKay, J.L. (2007). Neuromechanics of muscle synergies for
posture and movement. Curr. Opin. Neurobiol. 17, 622–628.

Ting, L.H., and Chvatal, S.A. (2010). Decomposing muscle activity in motor
tasks: methods and interpretation. In Motor control: theories, experiments,
and applications, F. Danion and M.L. Latash, eds. (New York: Oxford Univer-
sity Press), pp. 102–138.

Ting, L.H., Chvatal, S.A., Safavynia, S.A., and McKay, J.L. (2012). Review and
perspective: neuromechanical considerations for predicting muscle activation
patterns for movement. Int. J. Numer. Method Biomed. Eng. 28, 1003–1014.

Todorov, E. (2004). Optimality principles in sensorimotor control. Nat. Neuro-
sci. 7, 907–915.

Todorov, E., and Jordan, M.I. (2002). Optimal feedback control as a theory
of motor coordination. Nat. Neurosci. 5, 1226–1235.

Torres-Oviedo, G., and Ting, L.H. (2007). Muscle synergies characterizing
human postural responses. J. Neurophysiol. 98, 2144–2156.

Torres-Oviedo, G., and Ting, L.H. (2010). Subject-specific muscle synergies
in human balance control are consistent across different biomechanical
contexts. J. Neurophysiol. 103, 3084–3098.

Torres-Oviedo, G., Macpherson, J.M., and Ting, L.H. (2006). Muscle
synergy organization is robust across a variety of postural perturbations.
J. Neurophysiol. 96, 1530–1546.

Tresch, M.C., and Jarc, A. (2009). The case for and against muscle synergies.
Curr. Opin. Neurobiol. 19, 601–607.

Tresch, M.C., Saltiel, P., and Bizzi, E. (1999). The construction of movement
by the spinal cord. Nat. Neurosci. 2, 162–167.

Tresch, M.C., Cheung, V.C., and d’Avella, A. (2006). Matrix factorization
algorithms for the identification of muscle synergies: evaluation on simulated
and experimental data sets. J. Neurophysiol. 95, 2199–2212.

Trumbower, R.D., Jayaraman, A., Mitchell, G.S., and Rymer, W.Z. (2012).
Exposure to acute intermittent hypoxia augments somatic motor function
in humans with incomplete spinal cord injury. Neurorehabil. Neural Repair
26, 163–172.

Tsianos, G.A., Goodner, J., and Loeb, G.E. (2014). Useful properties of spinal
circuits for learning and performing planar reaches. J. Neural Eng. 11, 056006.

Turns, L.J., Neptune, R.R., and Kautz, S.A. (2007). Relationships between
muscle activity and anteroposterior ground reaction forces in hemiparetic
walking. Arch. Phys. Med. Rehabil. 88, 1127–1135.

Tytell, E.D., Holmes, P., and Cohen, A.H. (2011). Spikes alone do not behavior
make: why neuroscience needs biomechanics. Curr. Opin. Neurobiol. 21,
816–822.

Valero-Cuevas, F.J., Zajac, F.E., andBurgar, C.G. (1998). Large index-fingertip
forces are produced by subject-independent patterns of muscle excitation.
J. Biomech. 31, 693–703.

Valero-Cuevas, F.J., Venkadesan, M., and Todorov, E. (2009). Structured
variability of muscle activations supports the minimal intervention principle
of motor control. J. Neurophysiol. 102, 59–68.
54 Neuron 86, April 8, 2015 ª2015 Elsevier Inc.
van Antwerp, K.W., Burkholder, T.J., and Ting, L.H. (2007). Inter-joint coupling
effects on muscle contributions to endpoint force and acceleration in a
musculoskeletal model of the cat hindlimb. J. Biomech. 40, 3570–3579.

van Hedel, H.J.A., and Dietz, V. (2010). Rehabilitation of locomotion after
spinal cord injury. Restor. Neurol. Neurosci. 28, 123–134.

van Hedel, H.J.A., and Dietz, V.; European Multicenter Study on Human
Spinal Cord Injury (EM-SCI) Study Group (2009). Walking during daily life
can be validly and responsively assessed in subjects with a spinal cord injury.
Neurorehabil. Neural Repair 23, 117–124.

Vaynman, S., Ying, Z., and Gomez-Pinilla, F. (2003). Interplay between
brain-derived neurotrophic factor and signal transduction modulators in the
regulation of the effects of exercise on synaptic-plasticity. Neuroscience
122, 647–657.

Vinit, S., Lovett-Barr, M.R., and Mitchell, G.S. (2009). Intermittent hypoxia
induces functional recovery following cervical spinal injury. Respir. Physiol.
Neurobiol. 169, 210–217.

Wagner, G.P., Pavlicev, M., and Cheverud, J.M. (2007). The road to modu-
larity. Nat. Rev. Genet. 8, 921–931.

Walter, J.P., Kinney, A.L., Banks, S.A., D’Lima, D.D., Besier, T.F., Lloyd, D.G.,
and Fregly, B.J. (2014). Muscle synergies may improve optimization prediction
of knee contact forces during walking. J. Biomech. Eng. 136, 021031.

Weishaupt, N., Li, S., Di Pardo, A., Sipione, S., and Fouad, K. (2013). Synergis-
tic effects of BDNF and rehabilitative training on recovery after cervical
spinal cord injury. Behav. Brain Res. 239, 31–42.

Welch, T.D., and Ting, L.H. (2008). A feedback model reproduces muscle
activity during human postural responses to support-surface translations.
J. Neurophysiol. 99, 1032–1038.

Whitall, J. (2004). Stroke rehabilitation research: time to answer more
specific questions? Neurorehabil. Neural Repair 18, 3–8.

Wilkerson, J.E., and Mitchell, G.S. (2009). Daily intermittent hypoxia
augments spinal BDNF levels, ERK phosphorylation and respiratory long-
term facilitation. Exp. Neurol. 217, 116–123.

Will, B., Galani, R., Kelche, C., and Rosenzweig, M.R. (2004). Recovery from
brain injury in animals: relative efficacy of environmental enrichment, physical
exercise or formal training (1990-2002). Prog. Neurobiol. 72, 167–182.

Wittenberg, G.F. (2009). Neural plasticity and treatment across the lifespan for
motor deficits in cerebral palsy. Dev.Med. Child Neurol. 51 (Suppl 4 ), 130–133.

Wittenberg, G.F., and Schaechter, J.D. (2009). The neural basis of constraint-
induced movement therapy. Curr. Opin. Neurol. 22, 582–588.

Woollacott, M., and Shumway-Cook, A. (2002). Attention and the control of
posture and gait: a review of an emerging area of research. Gait Posture 16,
1–14.

Wu, H.G., Miyamoto, Y.R., Gonzalez Castro, L.N., Ölveczky, B.P., and Smith,
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