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Introduction

Human foot arch:

▪ Proposed to store and release elastic energy during locomotion [1]

▪ Experimental evidence for this assumption during jumping is missing

▪ Midsole bending stiffness (MBS) of footwear can affect the deformation of the

arch [2] and jumping performance [3]

▪ Role of the arch during jumping and how it is affected by MBS is unknown

Results

Methods

▪ N = 10; male participants

▪ 5 countermovement jumps per condition

▪ 2 stiffness conditions: control (1.2 N/mm) & stiff (11.9 N/mm)

▪ Jump height determined using impulse-momentum method [4]

▪ GRF partitioned using weighted probabilistic approach [5]

▪ MTU model: MC – MP1 + TOE – MP1

AA arch angle
MP1 distal head of 1st metatarsal
NT navicular tuberosity
MC medial calcaneus
TOE medial forefoot
Line plane of best fit
MTU plantar muscle-tendon unit

Fig. 1 Mean (±SD) change in arch angle (a), arch power (b), change in MTU
length (c), and arch work (d) during countermovement jumps in a
control (blue) and stiff (red) shoe condition for 10 participants (*p<0.05).
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Purpose:

Investigate how the arch of the human foot

contributes to jump height and how its

mechanics are affected by increased midsole

bending stiffness.

▪ Arch extended during the eccentric and flexed towards the

end of the concentric phase of the jump

▪ Positive arch power was generated before take-off

▪ Arch was significantly more extended at take-off in stiff shoe

reduced positive work done at the arch

▪ Reduced positive arch work in stiff condition did not affect

jump height

MTP joint compensated for work differences
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Arch Power [W*kg-1] Arch Work 
[J*kg-1]

Control Stiff

Positive 0.26
(0.08)

0.22*
(0.07)

Negative -0.05
(0.03)

-0.04
(0.03)

Net 0.21
(0.08)

0.18*
(0.08)
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