The energy return properties of the longitudinal arch in jumping

Saša Čigoja^a, Michael J. Asmussen^b, Colin R. Firminger^c, Jared R. Fletcher^d, W. Brent Edwards^{a,c}, Benno M. Nigg^a

^aHuman Performance Laboratory, Faculty of Kinesiology, University of Calgary ^bDepartment of Biology, Faculty of Science & Technology, Mount Royal University ^cBiomedical Engineering Graduate Program, University of Calgary ^dDepartment of Health and Physical Education, Mount Royal University

Introduction

Human foot arch:

Proposed to store and release elastic energy during locomotion [1]

Experimental evidence for this assumption during jumping is missing

Purpose:

Investigate how the arch of the human foot

UNIVERSITY OF CALGARY

- Midsole bending stiffness (MBS) of footwear can affect the deformation of the arch [2] and jumping performance [3]
- Role of the arch during jumping and how it is affected by MBS is unknown

contributes to jump height and how its

mechanics are affected by increased midsole

bending stiffness.

Methods

- N = 10; male participants
- 5 countermovement jumps per condition
- 2 stiffness conditions: control (1.2 N/mm) & stiff (11.9 N/mm)
- Jump height determined using impulse-momentum method [4]

- plantar muscle-tendon unit MTU

- GRF partitioned using weighted probabilistic approach [5]
- MC MP1 TOE – MP1 MTU model: +

Results **ΔArch Angle** [°] **ΔMTU Length [mm]** 8 **a**) C) Extension 4 0 Shortening -5 -10 -4 End Con. -15 | Start Ecc. -8 Start Ecc. End Con. Arch Power [W*kg⁻¹] Stiff Arch Work Control

Discussion & Conclusion

- Arch extended during the eccentric and flexed towards the end of the concentric phase of the jump
- Positive arch power was generated before take-off
- Arch was significantly more extended at take-off in stiff shoe
 - reduced positive work done at the arch

length (c), and arch work (d) during countermovement jumps in a control (blue) and stiff (red) shoe condition for 10 participants (*p<0.05).

Reduced positive arch work in stiff condition did not affect

jump height

MTP joint compensated for work differences

Acknowledgements

Dr. Luke Kelly for the discussion, and **Drs. Janet Ronsky** and

Gregor Kuntze for sharing experimental equipment.

[1] Ker et al. (1987). *Nature; 325* (8): pp. 147-149. [2] Kelly et al. (2016). J. R. Soc. Interface; 13: 20160174. [3] Stefanyshyn & Nigg (2000). *Med. Sci. Sports Exerc.; 32* (2): 471-476. [4] Linthorne (2001). Am. J. Phys.; 69 (11): 1198-1204. [5] Riddick et al. (2019). J. R. Soc. Interface; 16: 20180680.

Saša Čigoja, B. Sc. **PhD Candidate – Kinesiology** sasa.cigoja1@ucalgary.ca